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ABSTRACT

This paper presents a scheme for segmenting images on the basis of differences in
localised measures of spatial texture. The scheme used was originally proposed by
Wilson and Spann [1] but incorporates a new clustering algorithm which gives im-
proved overall segmentation performance. The Wilson and Spann [1] algorithm uses
a clustering algorithm which proved susceptible to initial input parameters and gave
poor segmentation on our images. Our algorithm uses a modification of the Koontz,
Narendra and Fukunaga [2] clustering algorithm. By linking the clustering to the
resolution of the image, significant clusters were able to be realised, yielding a more
robust segmentation scheme. The adaptation also resulted in a significant reduction
in run-time. The paper is directed towards the problem of segmenting satellite syn-
thetic aperture radar (SAR) images and we give comparisons of the techniques on
SAR and other images.

1 INTRODUCTION

A number of remote sensing satellites (e.g., ERS-1, JERS, ALMAZ) use synthetic
aperture radar (SAR) to generate high resolution images ( 20m) of the earth’s sur-
face. These radar systems have the ability to produce images even when the earths
surface is cloud covered, or in darkness. A disadvantage is that they only operate at
one (radar) band, so the conventional multi-spectral techniques for identifying sur-
face cover can not be used. The multi-spectral techniques use the relative spectral
response in each pixel as a feature vector. This paper evaluates a technique which
attributes features to each pixel based on a localised measure of spatial frequency
content to provide the basis for a texture segmentation algorithm.

The texture features are derived from the two dimensional Fourier transform of the
whole image. This Fourier transformed image is then segmented into a number of
windowed areas. These areas are then inverse transformed (with padding) back to
the spatial domain. We now have various measures per pixel of the local spatial
frequencies which should contain the information needed to describe the local tex-
ture. The recognition algorithm relies on finding separable clusters of these feature
vectors. This is an unsupervised pattern recognition process.



2 WILSON AND SPANN TEXTURE SEGMENTATION SCHEME

The Wilson and Spann [1] algorithm has four stages: 1) Feature Extraction 2)
Quadtree Smoothing, to reduce noise in the “feature images”; 3) Local Centroid
Clustering, which identifies different groups of textures from the “feature images”;
4) Boundary Estimation, takes the segmented image back down the Quadtree, in-
creasing the resolution of the image and reevaluating the boundaries. Figure 1 shows
a symbolic representation of the algorithm.
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Figure 1: Neighbourhood and its 2-D histogram

2.1 Texture feature extraction

Texture features are designed to depict the correlation between a pixel in ques-
tion and its neighbours. Wilson and Spann [1] use 2-dimensional “Finite Prolate
Spheroidal Sequences” (f.p.s.s) to create filters that are optimally bounded both
in the spatial frequency domain and the spatial domain. This means a directional
spatial frequency filter can be created which has local finite support only in the
spatial domain. In mathematical terms, the f.p.s.s. is the largest eigenvector ob-
tained from equation (1), where B is a one-dimensional band-limiting operator in
the spatial frequency domain, I is a one-dimensional index-limiting operator in the
spatial domain, and F is the Fourier matrix.

B ∗ F ∗ I ∗ F ′ ∗ BvΩ = λvΩ (1)

VΩ = vΩ ∗ vT
Ω

(2)

where vΩ is a column vector, and VΩ in equation (2) is a 2-dimensional spatial
frequency filter. The filter can be represented both in the spatial frequency domain
and the spatial domain. A convolution of the filter in the spatial domain is equivalent
to a windowing in the spatial frequency domain. Another special property of the
filter is that it is scalable, i.e., a scaled result from one image filtering is equivalent
to scaling both image and filter before filtering.



Figure 2: Spatial frequency domain
representation of bandpass f.p.s.s.

Figure 3: Spatial domain envelope of
f.p.s.s.

To obtain the “texture feature images” a two-dimensional Fourier transform of the
whole image is first taken. The Fourier transformed image is then separately mul-
tiplied by various different f.p.s.s. spatial frequency windowing functions (14 in our
case) which are then inverse transformed (with padding) back to the spatial domain.
There are now 14 measures per pixel of the local spatial frequencies to describe the
texture.

2.2 Quadtree smoothing

Local area averaging or “blurring” reduces noise, and therefore reduces the variance
of the features associated with each class. This method is often used with SAR
images, as “speckle” noise is reduced by blurring. However blurring also reduces
resolution. This is why the multi-scale quadtree technique is used. A quadtree
is a layered version of the original image, each higher layer is a locally averaged
and sampled version of the previous layer. The sampling is achieved via a two by
two averaging array. The averaging at the top level gives the most well separated
clusters, whereas the original unaveraged image has the highest spatial resolution.

2.3 Local centroid clustering

The local centroid clustering occurs at the highest quadtree level; here the image
is segmented into its various classes. The classification algorithm does not require
prior training nor a priori knowledge of the number of classes, which is an advantage
if not all the textural characteristics of the terrain within the image are known.

2.4 Boundary estimation

Boundary estimation is required to work back down the quadtree after the original
image has been segmented at the highest level. As the algorithm descends through
the quadtree level-by-level, each segmentation boundary pixel is mapped to four
pixels. Each of these new pixels must be assigned to either the interior of adjacent
regions, or the new boundary.

3 MEAN-SHIFT CLUSTERING



Wilson and Spann [1] use a variation of the “mean-shift algorithm” that was orig-
inal proposed by Fukunaga and Hostetler [3] as a special case of their “gradient
clustering algorithm.” Like most clustering algorithms, an input parameter has to
be specified. This parameter determines the size of the windowing function, which
in turn determines the amount of clustering. Silverman [4] says that there is an
intuitive link between a windowing function and the size of a kernel in density es-
timating. The larger the kernel, the smoother the underlying density is estimated.
Therefore it can be visualised that a large window will produce a few large clusters,
while a small window will produce many little clusters.

In order to try and overcome the dependence of the algorithm on the window size,
Wilson and Spann [1] increased the window size after each pass until successive runs
produced consistent results. One pass was the continuous run of the “mean-shift
algorithm” repeated until no more means were shifted.

The algorithm was found to be still very dependent on window size, due to the
stopping mechanism. We found the stopping mechanism was unacceptable for real
images. Consider the case where we have two important clusters close to each other
in feature space, also included in this feature space are outlining points that are
going to cluster. As the algorithm stands, the stopping mechanism is dependent on
all points in the feature space whether they are forming significant clusters or not.
Therefore it is quite probable that the two original clusters will be merged to one
so as to allow all points to cluster; useful information has been lost for the sake of
insignificant points.

4 HIERARCHICAL CLUSTERING WITH SIGNIFICANCE

The idea presented in this section is the inclusion of “significance” into the clustering
algorithm. This “significance” is determined by whether the cluster that is formed in
feature space can form a segmented region in the image of the original resolution. By
Wilson and Spann’s [1] requirements, such a segment occurs if the segment contains
pixels that do not border pixels of other segments.

To interpret “significance” as part of the clustering algorithm, pixels from the image
must hold the one-to-one relationship with their respective points in feature space
throughout the clustering procedure. The clustering algorithm can then assign a
class to each point, which can be interpreted both in the image and feature space.
“Significance” is given to individual point/pixels if they fulfill certain criteria both
in the feature space and image. The clustering algorithm must also adhere to a few
rules:

1. Once a point/pixels has been labelled as “significant” it must keep its class
for the remainder of the clustering algorithm

2. The “insignificant” point/pixels must be able to continue their clustering with-
out being affected by “significant” point/pixels

To implement “significance” into the “Mean-Shift algorithm”, “significant” points



must be kept stationary in feature space. Otherwise, if two different “significant”
points were to merge, confusion would be created for those “insignificant” points
that were to join this cluster as to which class they should belong. The “Mean-
Shift algorithm” however requires all points to be moving so that they all converge
onto the same mean of their chosen cluster. If a point stops before it reaches its
correct mean, then in order for that cluster to form properly, all the other points
that were to converge onto the same mean must now converge onto the stationary
point. This may never happen if other converging points also stop. Therefore rule
2 in the clustering rules cannot be adhered to.

4.1 Hierarchical clustering

The hierarchical clustering algorithm presented by Koontz, Narendra, and Fuku-
naga [2] could be considered a distant cousin to the “Mean-Shift algorithm”. It
has already been said that the “Mean-Shift algorithm” is a special case of the more
general algorithm presented by Fukunaga and Hostetler [3] which employs a gradi-
ent estimate. The hierarchical clustering algorithm also uses a gradient estimate.
Silverman [4] gives a generalisation of the algorithm, but we used the one defined
in Koontz, Narendra, and Fukunaga [2], due to its ease of computation and because
there is no need to find a density estimate.

The basis of the algorithm is to assign a parent to each point in feature space. If
no parent can be assigned, then that point becomes a root. Each root is given a
different class, and those points with parents take on the class of their parent. The
algorithm is called hierarchical because no point can have more than one parent,
but a parent can have many children.

Let dij denote the distance between two points Xi and Xj in feature space. Define
the neighbourhood ηi

θ of Xi as

ηi
θ = {k|dik ≤ θ, k 6= i} (3)

where θ is a given scalar. Define the (population) density Ni at Xi as

Ni = |ηi
θ| = number of elements in ηi

θ. (4)

Finally we define a gradient index gij

gij =
Nj − Ni

dij

. (5)

The parent node of Xi is the one that gives the highest non-negative gradient. For
cases where there is more than one suitable parent, a tie breaking rule is applied so
only one parent exists. Nodes that have not been assigned a parent are labelled as
roots. These roots can form the nucleus of new clusters.

The overall clustering of points is similar to that achieved via the “mean-shift al-
gorithm.” In the hierarchical algorithm the points are not moved. Therefore the
previous concept of “significance” can be applied.

4.2 Implementation

The hierarchical algorithm is non-iterative and is completely determined by a single



control variable θ, or equivalently the window size. As it stands, starting with a
small window and increasing its size after each calculation makes no sense, as each
window size will produce its own unique solution independent of previous calcula-
tions. However this all changes if we consider “significance.”

Hierarchical Clustering with Significance

• Step 1: Start with a small window size, and label all points as “insignificant”

• Step 2: Perform hierarchical clustering on all points, but only assign classes
to the “insignificant” points

• Step 3: Map the classes to the image

• Step 4: Find image pixels that are completely surrounded by pixels of the
same class (interior pixels)

• Step 5: Label interior pixels and their immediate neighbours as “significant”,
so they are not reassigned in future clustering

• Step 5: Test stopping criterion, if not finished increase window size and go to
step 2

There are two stopping criteria that are suggested. The first tests whether the
number of “significant” point/pixels is greater than a certain percentage of the
image size. The second test determines whether each cluster contains “significant”
point/pixels. If either is true the clustering is stopped.

4.3 Multiprocessor implementation

The complete segmentation scheme was built on a multiprocessor. For an N × N

image, the clustering algorithm was able to be reduced from an order of N 3 to N2

computations. With the new clustering algorithm, the modifications required very
little extra computational time. Since fewer iterations were required it was running
faster. The final run time for a 512x512 image was around ten minutes on a MasPar
with 4096 processing elements.

5 RESULTS

The Wilson and Spann [1] algorithm performed well on simulated data. The segmen-
tation of real images (SAR) required further tuning to optimise segment boundaries.
With the replacement of the “mean-shift” clustering algorithm with the “significant
hierarchical” algorithm, better segmentation could be obtained in a real image.

Advantages: 1) Small increments in the window size could be used without affecting
the stopping mechanise. This allowed for the capture of fine texture differences in
the image; 2) Worked well for feature vectors with small variances (which occur in
real images); 3) A significant speed increase was observed, especially for the larger
images.



Disadvantage: 1) Did not work as well for feature vectors with large variances
e.g., synthetic brodatz images, especially if a particular texture had a multimodal
distribution

Further Research: 1) The use of edge detectors on the feature images and image
itself to aid in segmentation; 2) Finding the correct Quadtree level to isolate each
texture. To obtain the best feature vectors each filter must match the scale of the
texture. However with satellite images, texture scale does not change very much.

A comparison of the two techniques is presented in Figures 4 to 9, showing the seg-
mentations of three different types of images: three brodatz images, a photographic
image, and a SAR image.

6 CONCLUSION

In conclusion we find that the problem of the Wilson and Spann [1] algorithm arises
from its characteristic of continuing the clustering of all feature points until a global
measure is satisfied. This can allow quite separate clusters to become merged to
accommodate just a few outliers.

The technique we propose which uses a “significance” criterior to identify clusters
gives a much improved performance.

The technique relies on a one-to-one mapping between points in feature space and
pixels. Hence a cluster in feature space can be tested to see whether it provides
an appropriate segment in the image. Therefore a feature point can be continually
reclustered until it is both represented in a cluster and as a pixel in an appropriate
segment of the image, such a point/pixel was called “significant”. This provided
a local stopping mechanism for the clustering algorithm. The clustering technique
proved more successful than the original, with the added advantage of being faster.
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Figure 4: Segmentation of
synthetic brodatz images
using the Wilson and Spann
algorithm

Figure 5: Segmentation of
synthetic brodatz images
with “significant hierarchi-
cal” clustering


