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Introduction

e [ he standard texture classifier uses a closed n-class

classifier based on the Bayesian paradigm [1].

e These perform supervised classification, whereby all

the texture classes have to be predefined [2].

e Under such an arrangement, each unknown texture is

classified into one of these predetermined classes.

e [he problem comes when there is no guarantee that

all the required texture classes have been predefined.

Consider for example, Synthetic Aperture Radar (SAR)

images of Earth’s terrain.

(a) Cultana, Australia

(b) Adelaide, Australia

_nmmc«m 1: SAR images show the possibility of terrain identification.




SAR Terrain Recognition

Advantages of using SAR: Airborne or spaceborne SAR
systems are particularly attractive because they are not

affected by atmospheric conditions or the degree of
light present (unlike LANDSAT or SPOT).

Terrain mapping of SAR: The terrain identification
process, as used on the LANDSAT and SPOT images,
is not as easily implemented on the SAR images.

e Limited number of frequency bands.
e Lower resolution.
e Presence of noise called “speckle”.
Best Option: It is evident from inspecting different SAR

images, as in Fig. 1, that certain types of terrain have
unique textural patterns associated with them.

Previous work: Supervised texture classification of SAR
images have already achieved quite a degree of
success [3].

Problem: However there still remains the problem that

supervised classification requires all of its classes to be

predefined. &




\ Proposed Scheme /

e \We present a new approach to this extreme multi-class
problem.

e A new classification scheme called “open-ended”
texture classification.

e This scheme is based on a significance test.

e Whereby the assumption is that the feature space is
complete, and that every class can be individually
modelled in its own unique space.
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(a) Conventional N class classifier (b) open-ended classifier

Figure 2: Opened and closed classifiers
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Texture Model Requirements

(a) Baboon (b) Einstein

Figure 3: Texture in images can represent different types of hair,
skin, or the jumper someone is wearing.

Requirements: The proposed classification scheme is
based on the assumption that their exists a texture
model which can capture MOST of the unique
statistical characteristics of the desired texture class.

Classification: is based on whether or not an unknown
texture exhibits significantly similar unique statistical

characteristics to a particular texture class.




Chosen Texture Model

e Unfortunately, obtaining a model that captures all the
unique characteristics specific to a particular texture is
still an open problem [4].

e However, a reasonable way to test whether a model
has captured all the unique characteristics is to use the
model to see if it can synthesise subjectively similar
texture.

e Some of the more successful models for synthesising
texture have been based on the MRF model [5].

e For Classification, however, a model should maximise
its entropy while retaining the unique characteristics of
the texture [6].

e That is, it should lower its statistical order while
retaining the integrity of its synthesised textures.

e We chose the nonparametric multiscale MRF model.

— It imposes few constraints on the texture.

/ — Can model varying orders of textural statistics. &




Markov Random Field Model

For a texture to be modelled as a MRF, the value of each
pixel in the texture must be dependent on a local set of
neighbouring pixels. This dependence is then modelled by
a Local Conditional Probability Density Function

(LCPDF) which defines the probability of a pixel being a
certain value given the values of its neighbouring pixels.
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(a) (b) (c)

Figure 4: Neighbourhoods. (a) The first order or “nearest-
neighbour” neighbourhood; (b) second order neighbourhood; (c)
eighth order neighbourhood.

Problem 1 Determining the correct neighbourhood size.

Problem 2 Estimation of the LCPDF [7, 8].
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Strong Nonparametric MRF

In [10] we showed that we can estimate the LCPDF as a
function of its marginal distributions by assuming that
there is conditional independence between
non-neighbouring sites for any subset of the image lattice.

Step 1 Choose a neighbourhood N.
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Figure 7: Neighbourhoods and their cliques.

Step 2 Choose a set of major cliques {C' C N}, cliques
that are not subsets of other cliques.

Step 3 For each major clique, estimate the marginal

/ distribution LCPDF. &




‘ Multiscale Texture Model
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Figure 8: Grid organisation for multiscale modelling of a MRF.

The multiscale synthesis algorithm starts from the top and
works its way down performing the following at each

e Estimation of the LCPDF from original texture at

e Applies stochastic relaxation (SR) (i.e., ICM or Gibbs

e While constraining the SR with respect to the above
image [13]. We implemented constrained SR through
the use of our own novel pixel temperature

implementation of local annealing in the relaxation

\
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Multiscale Synthetic Textures

To test whether a texture model has captured all the
unique characteristics: use the model to synthesise
textures so as to compare the visual similarity between the

synthetic and the original textures.
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Figure 9: VisTex textures: (a) Bark.0003; (b) Fabric.0008; (c)
Food.0011; (d) Flowers.0006; (e) Food.0010; (f) Leaves.0016; (.1)
Textures were synthesised from a nonparametric multiscale MRF model

with a 7 X 7 neighbourhood.
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Figure 10
Reptile skin

MRF Model;

Brodatz textures:

(c) D77

Cotton canvas:
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French canvas; (b) D22 -
.1) textures synthesised with

(

.2) textures synthesised with Strong MRF Model.
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e

Open-ended Texture Classification

e To perform open-ended texture classification we first
build an LCPDF from the training texture.

e This LCPDF is then used to collect probabilities from

an unknown texture and a training texture.

e The classification is then made by performing a
significance test on whether the two sets of
probabilities are from the same population.

e We used the nonparametric Kruskal-Wallis test [14] to
test this null hypothesis.

e A significance test for the classification process was
deemed possible if the LCPDF involved in collecting
the probabilities was able to reproduce similar
synthetic textures to the training texture.

e This ensured that the statistics, or features, involved
in the classification were unique to the texture class.

e A texture with significantly similar unique statistical
characteristics would then be deemed to be of the

/ same class. &
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Open-ended Classified Textures

(b.1) (b.2) (b.3)

Probability scale O —— 1
Figure 11: Probability maps of Brodatz texture mosaics (a) and (b)
with respect to: (a.1) D3 - Reptile skin; (a.2) D15 - Straw; (a.3) D57 -

Handmade paper; (b.1) D17 - Herringbone weave; (b.2) D84 - Raffia;
and (b.3) D29 - Beach sand.
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Analysis of Performance

Table 1: Percentage error for open-ended texture classifi-
cation of 100 VisTex texture mosaics = percentage area of
false negatives + percentage area of false positives. VisTex
Texture mosaics courtesy of Computer Vision Group at the
University Bonn [15], and Vision Texture Archive of the MIT
Media Lab

_ Neighbourhood Size _ Clique Size Multigrid Height Percentage Error Rank

3 X3 2 0 15.67 6
3 X3 2 1 12.94 1
3 X3 2 2 13.85 3
3 X3 2 3 18.33 8
3 X3 3 0 23.70 18
3 X3 3 1 18.58 10
3 X3 3 2 17.62 7
3 X3 3 3 21.80 17
3 X3 - 0 24.04 20
3 X3 - 1 19.45 12
3 X3 - 2 18.40 9
3 X3 - 3 21.79 16
5 X5 2 0 14.69 4
5 X5 2 1 13.48 2
5 X5 2 2 15.22 5
5 X5 2 3 21.55 15
5 X5 3 0 21.45 14
5 X5 3 1 18.74 11
5 X5 3 2 19.46 13
5 X5 3 3 25.48 22
5 X5 - 0 25.54 23
5 X5 - 1 24.38 21
5 X5 - 2 23.98 19
5 X5 3

30.33 24 &
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Practical Application

(c.1) (c.2) (c.3)
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Figure 12: Probability maps of medical images: (a) lymphoid follicle
in the cervix; (b) small myoma; (c) focus of stromal differentiation in

the myometrium.
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Practical Application

(a) (b) (c)

Figure 13: Airborne SAR image of Cultana [16] with the probability
maps of the trees and grass superimposed.

The practical application of terrain mapping a SAR image
of Cultana, Fig. 13, shows the two results if: 1) the
training class was a patch of trees from the bottom left
corner, Fig. 13(b); or 2) the training class was a patch of
grass from the bottom right corner, Fig. 13(c). In both
cases the resulting probability maps have been
superimposed on to the original SAR image. This gives a
clear indication of how the open-ended texture

classification has performed.

\_ /
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Summary and Conclusion

We were able to use our nonparametric MRF model to
synthesise realistic realisations of a training texture.

It was with this evidence that we concluded that the
nonparametric multiscale MRF model captured most
of the unique characteristics specific to a particular
texture.

With such a model it became feasible to recognise
other similar textures from an image containing
multiple unknown textures.

The model was used to determine the probability that
an unknown texture was similar to a training texture
with respect to its unique statistical characteristics,
thereby performing open-ended texture classification.

This technique is considered potentially valuable in the
practical application of terrain mapping of SAR
Images.
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