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ABSTRACT

Surveillance of large areas of the Earths surface is often un-
dertaken with low resolution synthetic aperture radar (SAR)
imagery from either a satellite or a plane. There is a need to
process these images with automatic target detection (ATD)
algorithms. Typically the targets being searched for are ve-
hicles or small vessels, which occupy only a few resolution
cells. Simple thresholding is usually inadequate for detec-
tion due to the high amount of noise in the images. Often
the background has a discernible texture, and one form of
detection is to search for anomalies in the texture caused
by the presence of the target pixels. To perform this task a
texture model must be able to model a variety of textures
at run time, and also model these textures well enough to
detect anomalies. We accomplish this with our multiscale
nonparametric Markov random field (MRF) texture model.

1. INTRODUCTION

Defence reviews of Australia [1, 2] have consistently iden-
tified the need for airborne surveillance of remote areas and
coastlines of Australia. A specific requirement is for air-
borne surveillance based on synthetic aperture radar (SAR)
imagery and automatic processing of the imagery as it is
being formed [1]. With current resolving powers, and with
vast areas of terrain, modern SAR sensors can produce large
quantities of imagery in a short space of time. The large
amount of data requiring real time processing means that
a computer system is needed to perform the searches for
any incursions, or in other words perform ”automatic target
detection” (ATD). From previous work, it has been made
clear that no single algorithm will suffice, and that new ap-
proaches need to be continually sought [3].

An advantage of using SAR imagery is that it is not im-
peded by cloud cover, however the resolution is lower than
that which can be obtained from a photographic imaging
system. In low resolution synthetic aperture radar (SAR)
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imagery, targets of interest may only be a few image pix-
els in size, and may be buried in radar clutter plus terrain
texture. Conventional target detection by radar requires the
target to have a much stronger signal than the background
texture and noise, thus allowing a simple thresholding pro-
cess to extract the target from the background. However the
nature of the noise associated with SAR, called “speckle”,
makes thresholding very susceptible to high levels of false
target detection. Current target detection algorithms have
been criticised for their very high false detection rates [3].

In the current literature there are two methods for reduc-
ing the false detection rate. Firstly, the detection algorithm
itself can be designed to detect anomalies in the background
texture caused by the presence of the target pixels [4, 5].
The second method for reducing the false detection rate is
based on segmenting the image into homogeneous texture
regions prior to detection. It has been shown that by restrict-
ing the standard constant false alarm-rate receiver (CFAR)
detectors to homogeneous texture regions, detection perfor-
mance can be improved [6].

One possibility for improving the false detection rates is
to use a better texture model. We believe that our texture
model [7] will do just that by giving a better statistical un-
derstanding of the background texture. In [7, 8], we demon-
strated the ability of the texture model to fully characterise a
multitude of different textures by using the model to synthe-
sise visually similar texture with regard to a set of training
textures, as shown in Fig. 1.

For a texture model to detect anomalies in different types
of texture, it not only has to model the texture well, but
also be able to delineate between similar texture and sig-
nificantly different texture. In [9, 10] we showed the poten-
tial for our model to be used in our unique classification
method called “open-ended” classification. Unlike other
texture classification methods, our method does not require
an extensive library of predefined textures to perform near-
est neighbour type measurements. Instead our new classi-
fication method uses the underlying characteristics of the
texture to perform a goodness-of-fit type measurement. Ba-
sically we are able to identify specific textures from a suite
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Fig. 1. Synthesised VisTex textures using a nonparametric multiscale MRF model with a ����� neighbourhood. The VisTex
textures are: (a) Bark.0003; (b) Food.0010; (c) Leaves.0016. The larger images are the synthesised textures

of textures for which predefined models do not exist. This
is a significant advance on all other types of texture clas-
sification schemes, and is what is required to find texture
anomalies.

2. NONPARAMETRIC MULTISCALE MRF MODEL

The nonparametric multiscale MRF model, as presented in [7,
8], is based on probability density estimation of a multi-
dimensional histogram. This multi-dimensional histogram
is produced from recording the frequency of a set of grey
level co-occurrences between a pixel and its neighbours,
which are defined through a neighbourhood. The size of
the neighbourhood determines the dimensionality of the his-
togram. The estimated probability function over this his-
togram is called the local conditional probability density
function (LCPDF).

The domain of the multi-dimensional histogram domain
is equal to the number of different grey levels in the image
to the power of the number of neighbours in the neighbour-
hood. With a regular ����� neighbourhood, and 256 grey
levels, a �	��
����	�
 homogeneously textured image would
only fill ��������� of the domain space. This means that there
is very little data to produce a proper LCPDF. When the
sample data is sparsely and thinly dispersed over its domain
(as in our case), nonparametric estimates of the probability
function tend to be more reliable than their parametric coun-
terparts if the true underlying distribution is unknown [11].
This is one reason why we have opted to use the nonpara-
metric multiscale MRF model. Another reason is that we
can arbitrarily vary the statistical order of the model while
not being restricted by an underlying parametric function.

To test the ability of our texture model to adequately
model arbitrary textures, we used our model to synthesise
various natural textures. The synthesise algorithm is for-
malised in [8]. In Fig. 1 �
������
�� training textured images
were used to synthesise 
�������
���� synthetic textured images.
A subjective comparison of the training and synthetic tex-

tured images shows that the nonparametric multiscale MRF
model is able to capture the unique characteristics of the
training textures.

3. OPEN-ENDED TEXTURE CLASSIFICATION

To identify a target we will look for anomalies in the back-
ground texture for which we will use our open-ended texture
classifier [9, 10]. Open-ended texture classification is per-
formed by identifying a population of statistics that uniquely
identifies a particular texture and making a goodness-of-fit
comparison between it and an unknown texture. As our
nonparametric multiscale MRF model is able to synthesise
highly representative textures of a training texture, we are
able to say that the respective LCPDF contains information
that is unique to that texture. By comparing the popula-
tion of probabilities that are obtained by placing the LCPDF
over the background texture to the population of probabili-
ties that are obtained by placing the LCPDF over the target
texture, we are able to perform a goodness-of-fit test be-
tween the two populations. If the goodness-of-fit is signifi-
cantly high then we can say that the target texture is that of
the background texture and is not a target.

4. TARGET DETECTION

For target detection we have slightly modified the open-
ended texture classifier. First, the classifier is being used
on pre-segmented images of possible targets, as displayed
in Figs. 2 and 3. This ground truthed data consists of 76032� ��� � � images where the possible target is in the middle of
each image. Of these images only ��� � � have true targets.
The aim of algorithm is to dramatically reduce the number
of false targets, while retaining close to all of the true tar-
gets. Since we know that the target is in the middle of each
image, we define the target region as being in the middle
and everything else as background texture.



Fig. 2. True targets displayed in the centre of these 4 SAR
image segments.

Fig. 3. False targets displayed in the centre of these 4 SAR
image segments.

Fig. 4. The percentage of targets detected for MRF model
n1c0t0w6.

Fig. 5. The percentage of targets detected for MRF model
n3c2t1w4.

Second, in defining the LCPDF of the multi-dimensional
histogram, we found that we got the best results if we did
not use the Gaussian kernel function, but simply a minimum
distance measure, as described in [7]. The most likely rea-
son for this failure of Gaussian kernel function would be an
inability to find the appropriate window width or smoothing
parameter [11]. Not using one at all was better than using
the wrong window width.

Third, we modified the open-ended texture classifier by
improving the way multiple sets of probability characteris-
tics were combined. In [7] we simply did a goodness-of-
fit test for each set of probability characteristics, and then
added the results to obtain an overall result. In this paper
we did a two pass approach. One to get the probability
characteristics for each clique and quad-tree level. Then a
second pass to get the probability of obtaining the specified
set of probability characteristics for each pixel. Finally the
goodness-of-fit test was done on the resulting probabilities
for each pixel in the texture.



Table 1. Maximum Separation of True from False Targets

MRF Model % True % False Difference
Targets Targets

n1c0t0w2 95.7831 49.1141 46.6690
n1c0t0w4 98.1818 48.6900 49.4918
n1c0t0w6 98.1818 40.8977 57.2841
n1c0t1w2 61.9171 32.1006 29.8165
n1c0t1w4 81.8653 37.4280 44.4373
n1c0t1w6 81.3472 35.1727 46.1745
n1c2t0w2 100.0000 87.5660 12.4340
n1c2t0w4 100.0000 85.7598 14.2402
n1c2t0w6 100.0000 74.9797 25.0203
n1c2t1w2 53.2951 32.8751 20.4200
n1c2t1w4 69.2308 18.2420 50.9888
n1c2t1w6 76.3533 29.2877 47.0656
n3c0t0w2 96.0784 56.3422 39.7362
n3c0t0w4 99.3421 68.5711 30.7710
n3c0t0w6 98.6842 63.9889 34.6953
n3c0t1w2 54.9479 21.6457 33.3022
n3c0t1w4 72.9167 23.5184 49.3983
n3c0t1w6 92.4479 57.3799 35.0680
n3c2t0w2 100.0000 98.1185 1.8815
n3c2t0w4 100.0000 98.3405 1.6595
n3c2t0w6 100.0000 93.7550 6.2450
n3c2t1w2 54.7059 23.6806 31.0253
n3c2t1w4 81.1765 19.4171 61.7594
n3c2t1w6 88.3721 35.5536 52.8185

Figs. 4 and 5 show the goodness-of-fit output for two
different MRF models. The key to the models is as follows:
’n’ refers to the neighbourhood, 1 for nearest neighbour-
hood and 3 for ����� neighbourhood; ’c’ refers to the clique
size, 0 for no cliques and 2 for pairwise cliques; ’t’ refers
to the quad-tree height, 0 for just original image, and 1 for
level 0 and 1 of the image quad-tree; ’w’ refers to size of
size target region, 2 for a 
 ��
 region etc.

From table 1 it is clear that, at their best goodness-of-
fit threshold, the models n1c0t0w6 and n3c2t1w4 gave the
greatest discrimination between recognising true targets and
removing false targets. However it is model n1c0t0w6 that
retained the greatest percentage of true targets of 98% while
removing nearly 60% of the false targets.

5. CONCLUSION

Current target detection algorithms for SAR images suffer
greatly from too many false detections. As a step towards
improving the detection rates, we have proposed using our
open-ended texture classifier. Target detection is achieved
by modelling the background texture and determining the
goodness-of-fit between the target and the background tex-
ture. Targets are detected if the goodness-of-fit is low. Us-
ing this method we were able to greatly reduce the number
of false targets while retaining nearly all of the true targets.
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