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ABSTRACT

In this paper we present a non-causal, non-parametric,
multiscale, Markov random field (MRF) texture model. The
model is capable of capturing the characteristics of and syn-
thesising a wide variety of textures, varying from the highly
structured to the stochastic. We introduce a novel multi-
scale texture synthesis algorithm that allows us to use large
neighbourhood systems to model some complex natural tex-
tures. As an added advantage of using the novel multi-
scale texture synthesis algorithm, phase discontinuities in
the synthetic textures are reduced. Finally we show how
the high dimensional representation of the texture may be
modelled with lower dimensional statistics without compro-
mising the integrity of the representation. The power of our
modelling technique is evident in that only a small training
image is required to derive respectable results even when
the texture contains long range characteristics.

1. INTRODUCTION

In an image, texture is the visual characteristics of an im-
age segment that helps identify that segment with a cer-
tain physical interpretation, e.g., grass, hair, water or sand.
Photographic examples of some natural textures are given
in the Brodatz album [3].

In image processing, texture may be defined in terms of
spatial interactions between pixel grey levels within a digital
image. The aim of texture analysis is to capture the visual
characteristics of a texture by mathematically modelling
these spatial interactions. If, for a particular texture, these
spatial characteristics can be uniquely modelled, it becomes
possible to analytically discriminate that texture from other
textures. An image may then be segmented into its various
textural components with each component being classified
according to its model. The difficulty with texture analysis
lies in trying to uniquely model the texture.

Usually, when trying to segment an image into its differ-
ent textural components, all the different possible textural
types need to be known. Under such circumstances the
texture models only capture enough characteristics to dis-
tinguish each texture from all other known textures. This
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approach is adequate if the images undergoing texture seg-
mentation and classification are similar to the images that
were used to train the texture models. However, for im-
ages where not all the textural types are known, a texture
model needs to capture all the relevant characteristics that
uniquely identify a texture. Then, when an image is seg-
mented and classified, the model is used to identify the
probability that a particular image segment is of the same
texture as the model. This type of texture segmentation
and classification is required where not all the textural types
are known.

Unfortunately, with the present knowledge of texture,
obtaining a model that captures all the relevant character-
istics unique to a particular texture is an open problem.
Texture is not fully understood and therefore what consti-
tutes the relevant characteristics are unknown. A reason-
able way to test whether a texture model has captured all
the relevant characteristics is to synthesise a texture from
the model and make a subjective judgement on how similar
the synthetic and original texture are.

Current texture models like the auto-models, autore-
gressive (AR) models, moving average (MA) models, and
autoregressive moving average (ARMA) models, have not
been able to realistically synthesise natural textures [9] as
found in the Brodatz album. In this paper we present a non-
parametric, multiscale, Markov random field model that is
capable of synthesising natural textures. The synthesis al-
gorithm employed is a multiscale texture synthesis algo-
rithm [8] with a novel pixel temperature function.

Unfortunately, although the synthesis test indicates
whether the relevant characteristics have been captured, it
does not determine whether the model would be suitable
for segmentation and classification. Although the model
may contain the relevant characteristics it may also contain
superfluous characteristics that would not allow the model
to segment and classify similar textures. In this paper we
also present a method for reducing the non-parametric mul-
tiscale Markov random field model to a set of clique proba-
bility functions associated with Markov random field model.
In doing so we produce a model that still contains the rel-
evant characteristics but not the superfluous characteris-
tics. An added advantage of this technique is that it helps
obtain a better understanding of the type of parametric
Markov random field models required for modelling natural
textures.



2. TEXTURE MODEL

Markov random field (MRF) models have been used in im-
age restoration, region segmentation, and texture synthe-
sis [4]. The property of a MRF is that: a variable Xs on a
lattice S = {s = (i, j) : 0 ≤ i, j < N} may have its value xs

set to any value, but the probability of Xs = xs is condi-
tional upon the values xr at its neighbouring sites r ∈ N s.
A local conditional probability density function (LCPDF)
defined over these neighbouring sites r ∈ N s determines
the probability of Xs = xs. Therefore the LCPDF,

P (Xs = xs|Xr = xr, r ∈ N s) s ∈ S, (1)

defines the MRF [1].
To model an image as a MRF, consider each pixel in

the image as a site on a lattice, and the grey scale value of
that pixel as the value of that site. If the image is all of
one texture, then the LCPDF derived from the image is the
model that defines the texture.
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Figure 1: Neighbourhoods. (a) The first order neighbour-
hood (c = 1) or “nearest-neighbour” neighbourhood for the site
s = (i, j) = ‘•’ and r = (k, l) ∈ N s = ‘◦’; (b) second order
neighbourhood (c = 2); (c) eighth order neighbourhood (c = 8).

The neighbourhoods N c
s employed in this paper are the

same as in [6, 5] defined by,

N c
s = {r = (k, l) ∈ S : 0 < (k − i)2 + (l − j)2 ≤ c}, (2)

where c refers to the order of the neighbourhood system.
Neighbourhood systems for c = 1, 2 and 8 are shown in
Fig. 1 (a), (b), and (c) respectively.

2.1. Model 1: Non-parametric MRF Model

Given an image of a homogeneous texture, and a predefined
neighbourhood system, a non-parametric estimate of the
LCPDF may be obtained by building a multi-dimensional
histogram.

For example, choose a neighbourhood N s = {s − 1}
as shown in Fig. 2(a). To estimate the respective LCPDF,
build a 2-dimensional histogram with dimensions (L0, L1),
where L0 represents the pixel value xs and L1 represents
the relative neighbouring pixel value xs−1. Initialize
F (L0, L1) = 0 ∀ L0, L1. Then by raster scanning the image,
increment the variable F (L0 = xs, L1 = xs−1) for each site
s ∈ S, N s ⊂ S. The simple estimate of the LCPDF is then
given by,

P̂ (xs|xs−1) =
F (L0 = xs, L1 = xs−1)

∑

L0∈Λ F (L0, L1 = xs−1)
. (3)
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Figure 2: Neighbourhood and its 2-D histogram

The data obtained from the image to build the multi-
dimensional histogram is not independent and identically
distributed (i.i.d.). However the pseudo-likelihood estimate [2]
of the LCPDF uses the same non i.i.d. data. Geman and
Graffigne [7] proved that the pseudo-likelihood estimate
converged to the true LCPDF with a probability one as
the image size increased to infinity. With this evidence we
justify our use of non i.i.d. data for estimating our non-
parametric version of the LCPDF.

The true LCPDF is given by a histogram built from
an infinite amount of sample data. Therefore the true
LCPDF needs to be estimated from the multi-dimensional
histogram. A non-parametric density estimator is advan-
tageous for this type of problem where the domain is only
sparsely populated with sample data [11].

2.2. Parzen Window Density Estimator

The Parzen-window density estimator [11] has the effect of
smoothing each sample data point in the multi-dimensional
histogram over a larger area.

Denote the sample data as Zs = Col[xs, xr, r ∈ N s] s ∈
S,N s ⊂ S. For a column vector z = Col[L0, Lnr

, r ∈ N s],

the Parzen-window density estimated frequency F̂ (z) of the
previously frequency F is given by [11, p 76] as,

F̂ (z) =
1

nhd

∑

s∈S,N s⊂S

K

{

1

h
(z −Zs)

}

, (4)

where n is the number of sample data Zs, h is the window
parameter, and d = |N s|+1 equals the number of elements
in the vector z.

The shape of the smoothing is defined by the kernel
function K. We choose K as the standard multi-dimensional
Gaussian density function,

K(z) =
1

(2π)d/2
exp(−

1

2
z
T
z). (5)

The size of the kernel function K is defined by the win-
dow parameter h. The aim is to correctly choose h so as to
obtain the best estimate of the frequency distribution F̂ for
the LCPDF. From Silverman [11, p 85] an optimal window
parameter hopt is,

hopt = σ

{

4

n(2d + 1)

}1/(d+4)

, (6)



where σ2 is the the average marginal variance. In our case
the marginal variance is the same in each dimension and
therefore σ2 equals the variance associate with the one-
dimensional histogram.

2.3. Model 2: Strong Non-parametric MRF Model

The underlying problem with determining the LCPDF is
that the domain over which the estimation process is per-
formed is very large and only sparsely populated with sam-
ple data. This makes a reasonable estimation of the LCPDF
very hard to achieve. The second model presented here has
been constructed so as to reduce the domain over which
the estimation process is performed, while maintaining the
integrity of the LCPDF.

The LCPDF for a strong MRF [10] may be written in
terms of its marginal distributions defined over the cliques
of its neighbourhood. Cliques are subsets of the neighbour-
hood, where each site in a clique is a neighbour to each
other site within the clique [6].

If we denote P (Xs = xs|Xr = xr, r ∈ C) as the condi-
tional probability defined over a clique C ⊂ N s, then we
find that the LCPDF may be approximated by,

P (Xs = xs|Xr = xr, r ∈ N s) =
∏

C⊂N s,

C 6⊂C′⊂N s

P (Xs = xs|Xr = xr, r ∈ C), (7)

where each clique probability P (Xs = xs|Xr = xr, r ∈ C)
is estimated in the same way as for the previous neighbour-
hood probability P (Xs = xs|Xr = xr, r ∈ N s).

This simple estimate (7) only incorporates those clique
probabilities defined on the major cliques of the neighbour-
hood which are not subsets of other cliques.

3. TEXTURE SYNTHESIS

Texture synthesis is one means by which to test whether the
LCPDF has captured the required textural characteristics
to model a particular texture. Proof that the model has
indeed captured these textural characteristics is obtained
by using the model to synthesis representative examples of
the same texture.

A texture may be synthesised from a MRF model via
a method known as stochastic relaxation (SR). An image
may be generated via SR by starting with any image and
iteratively updating pixels in the image with respect to the
LCPDF. We use the well known SR algorithm, the Gibbs
sampler [6].

3.1. Multiscale Relaxation

The basic concept of multiscale relaxation (MR) of an MRF
is to relax the image at various “resolutions.” The advan-
tage of this is that some texture characteristics are better
resolved at some resolutions than at others [8].

The multiscale model may be best described through
the use of a multigrid representation of the image as shown
in Fig. 3. The grid at level l = 0 represents the original
image, where each intersection point ‘•’ is a site s ∈ S. The

l = 0

l = 1

l = 2

?

increasing
image
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Figure 3: Grid organisation for multiscale modelling via deci-
mation. Only connections representing nearest-neighbour inter-
actions are included.

MR algorithm starts at the lowest resolution with a SR al-
gorithm. Once an equilibrium state has been reached, the
image is propagated down to the the next level where it
undergoes further relaxation. In our algorithm we also use
a pixel temperature function that allows the image prop-
agated down from the previous level to be better incorpo-
rated into the next relaxation process.

3.2. Pixel Temperature Function

The object of the pixel temperature function is to define a
degree of “confidence” in a pixel having the correct value.
Every pixel has its own individual temperature ts repre-
senting the confidence associated with the pixel xs. The
confidence is expressed as a value 0 ≤ ts ≤ 1, where 1
represents complete confidence and 0 none at all.

The pixel temperature is incorporated into the LCPDF
by modifying the form of (z − Zs) in (4) to,

(z −Zs) = col[L0 − xs, (Lnr
− xr)tr, r ∈ N s]. (8)

Before the SR algorithm starts at level l, those pix-
els which have been relaxed at the previous level l + 1 are
given a pixel temperature ts = 1 and therefore complete
confidence. The other pixels have their pixel temperatures
initialized to ts = 0 and therefore no confidence. After each
iteration of the SR algorithm, those pixels that were relaxed
have their temperatures updated. We chose the following
formula to describe the updated confidence,

ts =
1 +

∑

r∈N s

tr

|N s|
. (9)

Initially, only those sites that have had their values re-
laxed at the previous grid level are used in the LCPDF.
However, as the SR iterations progress, more sites gain a
degree of confidence. When ts = 1 ∀ s ∈ S the image is
propagated to the next lower grid level where the relaxation
process begins again.

4. RESULTS

A 128 × 128 image was used to derive the texture model,
from which a 256 × 256 image was synthesised. This was
done in order to confirm that the characteristics of the tex-
ture had indeed been captured by the model.
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Figure 4: Original Brodatz textures: (a) Brodatz D21
(French canvas); (b) Brodatz D22 (Reptile skin); (c) Bro-
datz D77 (Cotton canvas).

(a) (b)

Figure 5: Synthesised Brodatz D21 textures: (a) Model 1
(neighbourhood order c=18); (b) Model 2 (neighbourhood
order c=8 with 3rd order cliques).

5. CONCLUSION

From the results shown in Figs. 5–7, we believe that the
non-causal non-parametric multiscale Markov random field
texture model forms a highly representative model of the
texture.

The results obtained for second model, shown in Fig. 5(b),
Fig. 6(b), and Fig. 7(b), suggests that these textures may be
successively modelled with just third order statistics. Third
order statistics have the advantage of being easier to use in
a segmentation or classification algorithm as compared to a
complicated function defined over a multi-dimensional his-
togram, as was used in the first model.

(a) (b)

Figure 6: Synthesised Brodatz D22 textures: (a) Model 1
(neighbourhood order c=18); (b) Model 2 (neighbourhood
order c=8 with 3rd order cliques).

(a) (b)

Figure 7: Synthesised Brodatz D77 textures: (a) Model 1
(neighbourhood order c=18); (b) Model 2 (neighbourhood
order c=8 with 3rd order cliques).
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