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Abstract

T he underlying aim of this research is to investigate the mathematical descriptions

of homogeneous textures in digital images for the purpose of segmentation and

recognition. The research covers the problem of testing these mathematical descrip-

tions by using them to generate synthetic realisations of the homogeneous texture for

subjective and analytical comparisons with the source texture from which they were

derived. The application of this research is in analysing satellite or airborne images

of the Earth’s surface. In particular, Synthetic Aperture Radar (SAR) images often

exhibit regions of homogeneous texture, which if segmented, could facilitate terrain

classification.

In this thesis we present noncausal, nonparametric, multiscale, Markov random

field (MRF) models for recognising and synthesising texture. The models have the

ability to capture the characteristics of, and to synthesise, a wide variety of tex-

tures, varying from the highly structured to the stochastic. For texture synthesis,

we introduce our own novel multiscale approach incorporating a new concept of local

annealing. This allows us to use large neighbourhood systems to model complex nat-

ural textures with high order statistical characteristics. The new multiscale texture

synthesis algorithm also produces synthetic textures with few, if any, phase disconti-

nuities. The power of our modelling technique is evident in that only a small source

image is required to synthesise representative examples of the source texture, even

when the texture contains long-range characteristics. We also show how the high-

dimensional model of the texture may be modelled with lower dimensional statistics

without compromising the integrity of the representation. We then show how these

models – which are able to capture most of the unique characteristics of a texture

– can be for the “open-ended” problem of recognising textures embedded in a scene

containing previously unseen textures. Whilst this technique was developed for the

practical application of recognising different terrain types from Synthetic Aperture

Radar (SAR) images, it has applications in other image processing tasks requiring

texture recognition.
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Chapter 1

Introduction

1.1 What is texture?

(a) Baboon (b) Einstein

Figure 1.1: Texture in images can represent different types of hair, skin, or jumper
someone is wearing.

In an image, texture is one of the visual characteristics that identifies a segment as

belonging to a certain class, as illustrated in Fig. 1.1. We recognise many parts of the

image by texture rather than by shape e.g., fur, hair, knitted. If the texture belongs

to a class that has a particular physical interpretation such as grass, hair, water or

sand, then it may be regarded as a “natural” texture. Well known photographic

examples of some natural textures are shown in the Brodatz album [28], an example

of which appears in Fig. 1.2(a). On the other hand, a texture may belong to a

class identified by artificial visual characteristics that have a concise mathematical

1
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(a) Brodatz Texture: Reptile skin (b) Checker Board

Figure 1.2: Two different types of textures. a) Is a stochastic texture. b) Is a
deterministic texture.

interpretation. One example would be the checkerboard pattern, which is illustrated

in Fig. 1.2(b).

A complete definition of texture has been elusive as there does not exist an all

encompassing mathematical model of texture. However from a human perspective

we may conjecture that texture is a quality that distinguishes regularity in the visual

appearance of local detail. [50, 78, 196].

1.1.1 Human perception of texture

Julesz’s [110] classic approach for determining if two textures were alike was to

embed one texture in the other. If the embedded patch of texture visually stood out

from the surrounding texture then the two textures were deemed to be dissimilar.

The comparisons relied solely on pre-attentive human visual perception, where the

subjects were only given a very brief time to view the texture [14]. Julesz found

that texture with similar first order statistics, but different second-order statistics,

were easily discriminated. However Julesz could not find any textures with the

same first and second-order statistics, but different third-order statistics, that could

be discriminated. This led to the Julesz conjecture that “iso-second-order textures

are indistinguishable.” This was further substantiated with work on the visual
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discrimination of stochastic texture fields [166].

However, later Caelli, Julesz, and Gilbert [31] did produce iso-second-order tex-

tures that could be discriminated with pre-attentive human visual perception. Fur-

ther work by Julesz [111, 112] revealed that his original conjecture was wrong. In-

stead, he found that the human visual perception mechanism did not necessarily use

third-order statistics for the discrimination of these iso-second-order textures, but

rather used the second order statistics of features he called textons. These textons

he describes as being the fundamentals of texture. Julesz [111, 112] found three

classes of textons: colour, elongated blobs, and the terminators (end-points) of these

elongated blobs. Julesz revised his original conjecture to state that, “The human

pre-attentive human visual system cannot compute statistical parameters higher

than second order.” He further conjectured that the human pre-attentive human

visual system actually uses only the first order statistics of these textons.

Since these pre-attentive studies into the human visual perception, psychophys-

ical research has focused on developing physiologically plausible models of texture

discrimination. These models involved determining which measurements of textural

variations humans are most sensitive to. Textons were not found to be the plausi-

ble textural discriminating measurements as envisaged by Julesz [13, 150, 204]. On

the other hand, psychophysical research has given evidence that the human brain

does a spatial frequency analysis of the image [32, 56, 83]. Therefore a number of

models are now based on the responses of orientated filter banks [13, 15, 44, 139].

Tamura et al. [190] and Laws [130] identified the following properties as playing

an important role in describing texture: uniformity, density, coarseness, roughness,

regularity, linearity, directionality, direction, frequency, and phase. However these

perceived qualities are by no means independent.

A unified model with discriminating powers equal to that of human visual per-

ception, that has attained universal acceptance, has not been reported. For this

reason, a concise definition of texture does not exist in the literature, although some

authors claim to give one. Haindl [95] states that: “Texture is generally a visual

property of a surface, representing the spatial information contained in object sur-

faces.” Bennis and Gagalowicz [12] suggest texture may represent information that

permits the human eye to differentiate between image regions. Another definition

by Francos and Meiri [71] states: “Texture is a structure which is made of a large

ensemble of elements that resemble each other very much, with some kind of an or-

der in their locations, so that there is no single element which attracts the viewer’s



4 CHAPTER 1. INTRODUCTION

eye in any special way. The human viewer gets an impression of uniformity when

he looks at a texture.” Coggins [46] has compiled a catalogue of texture definitions

in the computer vision literature [98, 102, 172, 184, 191, 212]. The abundance and

range of the definitions of texture demonstrates that there is no one particular all

encompassing definition but many, where texture is defined with respect to the cho-

sen application. Some are perceptually motivated, and others are driven completely

by the application in which the definition will be used.

1.1.2 Computer analysis of texture

The vague definition of texture leads to a variety of different ways to analyse tex-

ture [98, 201]. The literature suggests three approaches for analysing textures [3,

43, 59, 98, 196, 205].

Statistical texture measures A set of features is used to represent the character-

istics of a textured image. These features measure such properties as: contrast,

correlation, and entropy. They are usually derived from the “grey value run

length,” “grey value difference,” or Haralick’s “co-occurrence matrix” [100].

Features are selected heuristically and an image similar to the original cannot

be re-created from the measured feature set. A survey of statistical approaches

for texture is given by Haralick [98].

Structural texture modelling Some textures can be viewed as two dimensional

patterns consisting of a set of primitives or subpatterns (i.e., textons [111])

which are arranged according to certain placement rules. Examples of such

textures are brick wall, mosaic floor, or wire braid. The primitives used are

areas of constant grey level, edges, lines, curves, and polygons. Correct iden-

tification of these primitives is difficult. However if the primitives completely

captivate the texture, then it is possible to re-create the texture from the

primitives. Fig. 1.2(b) illustrates one such texture for which primitives can

completely capture the texture. A survey of structural approaches for tex-

ture is given by Haralick [98]. Haindl [95] also covers some models used for

structural texture analysis.

Stochastic texture modelling A texture is assumed to be the realisation of a

stochastic process which is governed by some parameters. Analysis is per-

formed by defining a model and estimating the parameters so that the stochas-
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tic process can be reproduced from the model and associated parameters. The

estimated parameters can serve as a feature for texture classification and seg-

mentation problems. This approach offers the best possibility for re-creating

realistic examples of natural textures from a model. However, until our recent

success with MRF models [156], there had been little progress in this regard.

In this thesis, we demonstrate that a nonparametric MRF can represent a

wide range – if not all – spatially uniform textures. An overview of some of

the models used in this type of texture analysis is given by Haindl [95].

1.2 Application

1.2.1 Satellite images

Satellite images have many applications. Environmental monitoring, development

planning, disaster analysis, exploration, and military intelligence are just some of

the areas now using satellite data [62, 63]. Remote sensing imaging systems offer an

effective approach for generating large scale images of the Earth’s surface.

LANDSAT and SPOT satellite images in particular are widely used to extract

terrain information from the images. Terrain classification maps have numerous

applications ranging from hydrological, geological, geophysical and urban manage-

ment studies to the detection of deforestation or desertification and the monitoring

of vegetation on a global scale [93]. With the increasing need to assess the environ-

mental impact of humans on the global climate and natural ecosystems [62], large

scale terrain monitoring of the Earth’s surface is essential.

Conventional imaging systems, such as those used by the SPOT and LANDSAT

satellites, are equipped with passive imaging systems that produce high resolution

photographic images. These systems take pictures at various bands in the visible

and infrared spectrum [132, 171]. Identification of the terrain type is accomplished

through the analysis of the various spectral responses for a particular pixel loca-

tion in the image using the natural illumination provided by the sun. From the

spectral response it is possible to identify the quantity and type of vegetation that

is present [171]. A detailed map of the terrain (with an approximate resolution of

15-20 metres) may be obtained without physically visiting the image site. This is,

of course, a huge advantage when large and inaccessible areas need to be surveyed.

Two LANDSAT images are shown in Fig. 1.3.
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(a) August 1990 (b) February 1991

Figure 1.3: Two LANDSAT images of Kuwait city which show the adverse effects
of atmospheric conditions on passive remote sensing. a) Kuwait city before the Gulf
War of January-February 1991. b) Kuwait city after the Gulf War, where the image
is partially obscured by thick black smoke. The images appear courtesy of Earth
Resources Observation Systems [61].

The problem with passive remote sensing, as indicated in Fig. 1.3, is that since

the sensors use natural illumination of the sun, in the visible and infrared bands,

to illuminate the scene, then cloud (or smoke) can often obscure the scene making

analysis impossible.

1.2.2 Synthetic aperture radar (SAR) images

Alternatively, airborne or spaceborne SAR systems are particularly attractive be-

cause they are not affected by atmospheric conditions or the degree of light present.

The main difference between the SAR imaging system and the other conventional

satellite imaging systems of LANDSAT or SPOT is that SAR is an active system,

i.e., it produces its own illumination. The conventional imaging systems are passive

and require an external illumination source, i.e., the sun [198]. The SAR system

transmits radar waves to illuminate the scene. These radar waves can penetrate

cloud cover and are generally unaffected by atmospheric conditions. The images pro-

duced by the SAR system are consistent irrespective of the weather or the amount of

sunlight present. Comparative analysis may then be performed between two images

of the same site over any time frame. With their ability to ‘cut’ through cloud, SAR

systems are particularly suitable for monitoring rainforest and glacial regions – both

of particular significance to the global environment [62].
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However, radar waves have a much longer wavelength than natural light and

therefore radar imaging systems require a larger aperture than conventional imaging

systems to obtain the same image resolution. Unfortunately the size of the antenna

required to obtain this type of resolution is physically infeasible. The SAR system

overcomes this problem by digitally creating the response for a large pseudo antenna

from the multiple responses of a small moving antenna [29, 69]. Theoretically, the

response from almost any antenna size can be artificially created. This means in

turn almost any resolution (down to half a wavelength) is possible, but in practice

the resolution is limited by hardware constraints.

Figure 1.4: Airborne SAR imaging. The Doppler shift in the radar response dissem-
inates azimuth. The delay time disseminates range. This diagram appears courtesy
of the Sandia National Laboratories [126].

In order for the SAR system to disseminate range and azimuth information from

the returned radar signal, the system needs to transmit a coherent radar signal.

This allows range to be determined by the delay of the returned signal. Azimuth

information is obtained from the variation in Doppler shift of the returned signal. An

image is then formed by recording the intensity of the returned signal for each range

and azimuth position as illustrated in Fig. 1.4. Unfortunately, as a consequence

of using a coherent signal, the intensity of the signal is corrupted by noise called

“speckle.” This noise is caused by the coherent signal adding constructively and

destructively from many random phases. This randomness is independent of range

or azimuth, and is present on all types of terrain including otherwise uniform terrain.

The characteristics of the speckle are well documented, Goodman [87].
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1.2.3 Terrain mapping

The terrain identification process, as used on the LANDSAT and SPOT images, is

not as easily implemented on the SAR images. SAR imaging systems usually only

have the capacity to retrieve images at a limited number of frequency bands, but the

number of independent terrain discriminating parameters can be increased at least

three-fold with polarisation of the pulses (HH, VV, HV, or VH) [73, 173]. Because

of the lack spectral information in SAR images, texture offers the best possibility

for terrain classification.

A major consideration when using SAR imagery for terrain classification is the

presence of speckle noise, which creates a wide variety of pixel intensities from within

any single homogeneous terrain region [198]. This results in a greater potential for

misclassification of terrain type based on the spectral-polarmetric response for a

single pixel [185]. Speckle reduction methods have been used to reduce the problem,

but results reported suggest limited success [185].

Speckle corruption is not the hindrance one would first presume; on the contrary,

speckle itself has been used to segment a SAR image into a few different terrain

types [10, 58, 199]. This requires collecting the statistics of the spectral-polarmetric

responses for multiple pixels. Garside and Oliver [77] went further and suggested

that speckle is not noise and that its higher order spatial statistics are linked to

the local terrain scattering mechanisms. For a homogeneous terrain region, such

statistics may be captured from the corresponding spatial statistics of the pixels.

All this suggests that classification by texture recognition should be more robust to

speckle than the standard spectral-polarmetric pattern recognition approach for a

single pixel.

1.2.4 Research purpose

It is evident from inspecting different SAR images, as in Fig. 1.5, that certain types

of terrain have unique textural patterns associated with them. It is hoped that

texture analysis of these images will reveal that these terrain types lend themselves

to texture modelling, where each individual terrain type may be associated with a

unique model. In this case the terrain types may be automatically segmented and

classified from the SAR image, thereby producing a terrain map.
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(a) Cultana, Australia (b) Adelaide, Australia

Figure 1.5: Airborne SAR images show the possibility of terrain identification
through texture analysis. These images appear courtesy of Project Ingara, Mi-
crowave Radar Division, Electronics and Surveillance Research Laboratory at
DSTO, Australia.

1.3 Modelling texture

In the image processing literature, texture is usually defined in terms of the spatial

interactions between pixel values. The aim of texture analysis is to capture the

visual characteristics of texture in an analytical form by mathematically modelling

these spatial interactions [95]. If these spatial characteristics are uniquely modelled,

then different examples of textures from one source (population) can be associated

analytically, and discriminated from other textures. This allows segmentation of an

image into its various textural components, with each component being classified

according to how well it fits the mathematical model of a particular texture. This

approach requires the number and type of textures to be known in advance. That

is, a set of training textures are used to formalise the criteria by which the texture

models become unique from each other, but not necessarily unique from any other

textures not included in the training set [27, 40, 38, 106]. These conventional models

need only capture enough textural characteristics to classify the textures in the

training set, via discriminant analysis [60]. This approach is adequate if the image

undergoing texture segmentation and classification is known to contain only those

textures from the training set.
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Irrespective of the approach used, the problem with using a model to define a

texture is in determining when the model has captured all the significant visual

characteristics of that texture. The conventional method is to use the models to

actually classify a number of textures, the idea being to heuristically increase (or

decrease) the model complexity until the textures in the training set can be suc-

cessfully classified. As an example, Haralick et al. [100] defined 14 second order

texture features extracted from a grey level co-occurrence matrix (GLCM). Heuristic

modelling would consist of selecting the most discriminatory of these features via a

feature selection process, such as linear discriminant analysis.

A hindrance to universal adoption of such methods is the fact that not only do

they require a predefined set of training textures, but the model construction itself

is dependent on the training set. The models are heuristically constructed so as to

distinguish each texture in the training set from any other. The limitation of this

approach is that given a new image, the segmentation process based on these models

may not guarantee the performance desired, especially if an unmodelled texture is

present (i.e., a texture that is not included in the training set). There is then the

likely possibility that the features previously selected for modelling the textures may

not distinguish the new texture from all of the textures in the training set. In which

case, the feature selection process has to be repeated for all textures in the training

set plus the new texture (i.e., all models have to be reconstructed). It therefore

becomes very difficult to associate any degree of confidence with the performance

of a segmentation process based on such models. One of the better approaches to

this type of segmentation problem is the one presented by Geman and Geman et al.

[80], which applied constrained boundary detection to unsupervised segmentation,

which aided the discrimination of separate textures in the image.

1.3.1 Ideal texture model

If a texture is to be recognised in a scene containing previously unseen textures,

then a new approach is required. The texture models need to capture more than

just the characteristics required to distinguish one texture from other known textures

– they need to capture all the unique characteristics of that texture. Then, when

segmenting and classifying an image, the texture models would be used to determine

the probability of a segmented area as having the same unique characteristics as

a modelled texture. This being done without having to measure the probability

against other possible textures. This would solve the problem of previously unseen
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textures being present in the image. Images susceptible to this type of texture

classification problem are those obtained via Synthetic Aperture Radar (SAR) from

satellites, or airborne SAR, where the images are of the Earth’s terrain. These

types of images are unlikely to contain only known textures but are more likely

to contain a myriad of possible textures. It would be unreasonable to expect a

conventional texture classification scheme to have previously identified and modelled

all the different types of textures possibly present in the images of the Earth’s

surface.

An ideal texture model is one that can fully characterises a particular texture,

hence it should be possible to reproduce the texture from such a model. If this

could be done, we would have evidence that the model has indeed captured the

full underlying mathematical description of the texture. The texture would then be

uniquely characterised by the structure of the model and the set of parameters used

to describe the texture.

1.3.2 Testing the ideal texture model

To date ideal models that describe the full characteristics of a texture have only

been found for the very basic of textures (like a checkerboard) Fig. 1.2(b). Several

texture models have been investigated [95], but these models are based on rather

strict assumptions, and if these assumptions do not hold for a particular texture,

then it can not be “ideally” modelled. The problem then becomes: how do we know

if a model is ideal for a particular texture; or how do we know whether certain

assumptions can be made for a particular texture? What is required is a way of

testing the model to determine whether or not it is ideal. Unfortunately, because

there is no concise mathematical way of describing texture in general, the only means

for testing these models are:

1. Build a totally general model, one that does not require any assumptions, and

then see if the ideal model with its specific assumptions can be derived from

this general model by fitting the general model to the texture of interest.

2. Synthesise textures from the model and subjectively comparing the similarity

of the synthesised textures to the training texture.

The second test is the only practical option. Even if the first test were used, the

general model itself would need to be verified via the second test. The second test
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requires a subjective analysis, therefore accuracy of the test can not be guaranteed.

To completely verify the accuracy though analytical analysis would again require

the use of a general model. However reasonable verification is possible through

a combination of subjective and analytical analysis. Because we can only obtain

reasonable verification through the synthesis of textures from a model, this leads to

another problem: how do we verify that the particular texture we are interested in

is the only texture class the model encompasses and how big is this class? An ideal

model will encompass only the one texture class.

1.3.3 Open-ended classifier

We introduce open-ended texture classification, a process whereby an image is seg-

mented into regions of homogeneous texture, but where the region is only classified

if it is similar to a predefined texture type. This is unlike supervised classification,

where every region has to be classified, even when the region is not even remotely

similar to any of the textures with in the training set. Open-ended texture classifica-

tion is also unlike unsupervised texture segmentation/classification [117, 157, 168],

which segments an image into regions of homogeneous texture, but then just classi-

fies these regions with arbitrary labels.

We envisage an open-ended texture classifier to be used in image analysis ap-

plications where little prior knowledge exists of the background texture, but where

specific types of textures are important. The classifier would be used to train on the

specific types of textures and segment these textures from the unknown background.

For such a classifier, an ideal model would be required.

The conventional N class classifier, as used for supervised classification [60] and

illustrated in Fig. 1.6(a), is based on segmenting the feature space into N distinct

domains or classes. These domains are determined by the inter-relationships be-

tween classes. Typically, class boundaries are established through Bayes decision

theory [60]. This results in every point in the feature space being designated a par-

ticular class. The inclusion of more training classes would undermine these designa-

tions, requiring the classification boundaries to be completely reconfigured. There-

fore the conventional N class classifier is a closed classifier because all information

as to the number and type of textures classes must be prior known so as to correctly

determine the classification boundaries.

On the other hand, the open-ended classifier, as illustrated in Fig. 1.6(b), does
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(a) Conventional N class classifier (b) open-ended classifier

Figure 1.6: Opened and closed classifiers: (a) The conventional N class classifier
is a closed classifier since further input of training data would require a complete
reconfiguration of the designated classes. (b) open-ended classifier is open-ended
because further input of training data would not destroy the overall configuration
of the designated classes, but would instead enhance individual classes.

not require all the texture classes to be prior known. This classifier is based on

the assumption that the feature space is complete, in that any new class would

occupy its own distinct region in this feature space. The classifier is also based on

the assumption that each class can be represented by an ideal model, so that not

only does each model fully characterise the class, but the model may be used to

give a precise likelihood that any new data is of the same class. In this way, inter-

relationships between classes do not need to be defined, and therefore classification

boundaries do not need to be constructed. Instead an ideal model is used to define

the intra-relationships of the training data within each class. When new data is

presented to the classifier, one of the ideal models may determine there is a high

likelihood that that data is from the same class. On the other hand, if all the ideal

models determine that there is a low likelihood that the data is from their class,

then the data is defined as being from an unknown class. While the closed classifier

can not correctly classify data from an unknown class, the open-ended classifier can.

That is the open-ended classifier is “open” to unknown classes.

open-ended texture classification is achieved through the direct use of an ideal

texture model. Not only that, but the feature space on which the classifier is based
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needs to be complete. Both criteria can be tested via synthesis. If the most likely

texture synthesised by the model is one subjectively similar to the training texture,

then not only is the model ideal, but the feature space on which it resides must also

be complete.

The goal of this research is to produce a method by which a human operator

may be able to take a radar satellite image, segment a small portion from the

image where the terrain is known, and use this as the training texture to an ideal

texture model. Then, with respect to the texture model, find other similar terrain

types within the image, independent of the background textures. Such a method

of open-ended texture classification would be ideal for terrain mapping of Synthetic

Aperture Radar (SAR) images [104], as it would not require a complete library

of textures as needed for conventional models using supervised classification. With

such a method, any operator would be able choose the type of terrain they wished to

segment and classify from any arbitrary SAR image, without the need to supervise

the classification by modelling all texture types within the image. Open-ended

texture classification therefore lends itself towards the automation of the process,

which would be specially usefully if a large database of images needed to be analysed.

1.4 Building a texture model

The previous sections outline various problems associated with modelling texture.

The problems derive from the inconcise nature of texture, resulting in texture anal-

ysis techniques requiring additional underlying assumptions or being ad-hoc. The

one underlying factor in these texture analysis techniques is the requirement that

the texture models need to be able to distinguish between different textures. Con-

ventional techniques have relied on the number and type of textures being a prior

known. We would like to move beyond this restriction without jeopardising the in-

tegrity of the model. Therefore we need to build a model that can take one texture

and capture its full underlying characteristics.

1.4.1 Determining structure of the model

Unfortunately, with the present knowledge of texture, obtaining a model that cap-

tures all the unique characteristics specific to a particular texture is an open prob-

lem [78]. Texture is not fully understood, and therefore, what constitutes the unique
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characteristics has not been defined. However, a reasonable way to test whether a

model has captured all the unique characteristics is to use the same model to syn-

thesise the texture and subjectively judge the similarity of the synthetic texture to

the original.

Conventional texture models, like the auto-models [17], autoregressive (AR)

models [37], moving average (MA) models [95], or combination of both (ARMA)

models [115], have not been found to provide a basis for realistically synthesising

natural textures [95]. Although Bader, JáJá and Chellappa [6] did achieve modest

results with a GMRF model. However recent advances in texture synthesis have pro-

duced models that are capable of synthesising natural textures [28], textures that

contain both structural and statistical elements. These models are based on the

stochastic modelling of various multi-resolution filter responses [23, 103, 149, 211],

but they do not use third or higher order statistics, and it is undetermined whether

the chosen filters are globally optimal for all textures. Julesz [110] suggested there

was textural information in the higher order statistics, and Gagalowicz et al. [75]

used third order statistics to generate some natural textures. Popat and Picard [164]

successfully used a high-order, causal, nonparametric, multiscale MRF model to syn-

thesise some structured natural textures.

Although the synthesis test may indicate if a model has captured the specific

characteristics of a texture, it does not determine whether the model is suitable for

segmentation and classification. Based on Zhu, Wu and Mumford’s philosophy [211],

a texture model should maximise its entropy while retaining the unique character-

istics of the texture. The principle behind this philosophy is that a texture model

should only model known characteristics of a texture and no more. The model should

remain completely noncommittal towards any characteristics that are not part of

the observed texture. Zhu, Wu, and Mumford [211] used this philosophy to build

their minimax model, which was designed to obtain low entropy for characteristics

seen in the texture while maintaining high entropy for the rest, thereby sustaining

a model that infers little information about unseen characteristics. This minimax

entropy philosophy is equivalent to reducing the statistical order of a model while

retaining the integrity of the respective synthesised textures.
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1.4.2 Fitting the model to the texture

Depending on the statistical order of the model, its parameterisation requires a

certain sized area of homogeneous texture. Although it would be informative to fit

models of increasing statistical order, there is a limit to the statistical order which

may be successfully modelled. The statistical order defines a multi-dimensional space

over which sample data resides. The density estimate that forms from the placement

of the sample data in this multi-dimensional space describes characteristics of the

texture. The model captures these characteristics by conforming the density function

defined by the model to the density estimate defined by the sample data. Increasing

the statistical order of the model increases the number of dimensions over which this

density is defined. The modelling of high statistical order models is limited by the

curse of dimensionality, which occurs when the respective high-dimensional space

becomes infeasible large for modelling [11]. Silverman [183] showed that to maintain

reasonable accuracy in fitting the model, the amount of sample data needs to grow

almost exponentially with the dimensionality of the space. As we are dealing with a

limited amount of sample data, approximately equal to the size of the homogeneous

textured area, the accuracy of the model will rapidly decrease as the dimensionality

of the space increases.

An estimate of the size of the data set required to build a model of a particular

statistical order is shown in Table 1.1. The table gives the number of sample data

required to fit a density function with respect to the dimensionality of the space

in which the density resides. It is assumed that the underlying density function

is multivariate normal, and is of interest to estimate the mean of the multivariate

normal with a relative mean square error of less than 0.1.

These results are likely to be optimistic for estimating a density function derived

from a texture. Not only did Silverman predefine the density function, but only

the mean of a multivariate normal was fitted. To highlight why the sample size

increases so rapidly; given a ten-dimensional normal distribution, 99% of the mass

of the distribution is at points whose distance from the mean is greater than 1.6

standard deviations. In the one-dimensional case, nearly 90% of the distribution

lies between ±1.6 standard deviations. Thus it is likely to be difficult to fit a high-

dimensional density function without an enormous number of data samples. Even

if it was possible to fit a density function to the sample data, it still may give a

superficially false impression of the likely behaviour of sample data. Unfortunately

if the tail of the density is eliminated altogether by considering a uniform distribution
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Table 1.1: Sample size required to estimate a standard multivariate normal density
at the mean for an error of less than 0.1, from Silverman [183]

Dimensionality Required sample size

1 4
2 19
3 67
4 223
5 768
6 2 790
7 10 700
8 43 700
9 187 000

10 842 000

over a box, similar behaviour is still observed [180].

1.5 Our texture model

In this thesis we focus on the Markov Random Field (MRF) as a texture model.

The MRF model was chosen because it requires few underlying assumptions to be

made about a texture, and it also allows choice over the degree of statistical order

applied in the model. A first order statistical model is one that just models the

histogram of the texture, i.e., the intensity distribution of single pixels. Second

order statistics describes the intensity distribution of pairs of pixels. The Grey

Level Co-occurrence Matrix (GLCM) of Haralick et al. [100] is a typical example

of second order statistics. The parametric versions of the MRF model mainly use

just second order statistics and are referred to as auto-models by Besag [17]. One

of the most commonly used auto-models is the Gaussian MRF (GMRF) model [39].

This is because of its generality and its ability to require only an FFT to synthesise

texture instead of a long iteration process [59]. However, the GMRF has been unable

to realistically model natural textures from the Brodatz album [6, 95]. It has been

hypothesised that to model such structured textures third, or higher, order statistics

are required [75, 111]. We show a model that is capable of modelling these high order

statistical properties is the nonparametric MRF model.
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1.5.1 Synthesising realistic examples of texture

In this thesis, we present a noncausal, nonparametric, multiscale, Markov Random

Field (MRF) model which can be trained from a small portion of a natural texture.

We have also developed a technique for synthesising a texture image from the model.

The synthesis process is assisted with the incorporation of our novel pixel temper-

ature function into a multiscale synthesis algorithm [86]. The pixel temperature

function acts to perform local annealing.

By subjectively comparing the synthesised texture with the training texture, we

are able to establish the adequacy of the model. The power of our modelling tech-

nique is evident in that only a small image of either stochastic or structured texture

is required to produce a model capable of synthesising representative examples of

the training texture, even when the training texture contains long range characteris-

tics. This unique model may then be used to identify other examples of the training

texture from any other texture, and not just those textures contained in the training

set.

We find that the complexity of the model can be adjusted to find the minimum

order necessary for the synthesised texture to look representative of the training

texture. If the complexity is reduced below this order, the synthesised texture

becomes dissimilar to the training texture. If the complexity is increased above

this order, the synthesised texture remains fully representative, but the higher order

complicates the segmentation and classification process for which we have designed

the model.

1.5.2 Open-ended classification of texture

In this thesis, we also present a method for reducing the statistical order of the

nonparametric MRF model to a set of lower order properties based on the cliques of

the MRF. We show that this reduced model still contains the specific characteristics

required for synthesising representative texture, but due to the compact statistics,

is able to perform better at segmentation and classification. By judicious reduction

of the statistical order, the model may be optimised to capture the most unique

characteristics while retaining the integrity of the synthesised textures, thereby pro-

ducing a model suitable for open-ended classification of texture in an image. This

second model is based on Moussouris’ strong MRF model [148]. In this thesis we

show that Moussouris’ strong MRF model is equivalent to the Analysis-of-variance
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(ANOVA) model [67], which allows us to use the theorems of the ANOVA model

for estimating the strong MRF model.

For the open-ended classification of texture, we use our strong MRF model to

find the lowest order statistics that may be used to uniquely represent the texture.

The model is then used to collect a sample of statistics from an image segment

we wish to classify. This sample of statistics is compared to a sample of statistics

obtainable from the training texture. The classification is made on the basis of how

confident we are that the two sets of statistics are from the same distribution. Our

open-ended texture classification results are presented in the form of a probability

map showing the associated goodness-of-fit for each pixel and its surrounding area

being classed as being from the same model that describes the training texture.

1.6 Outline of thesis

Chapter 2 gives a broad overview of texture models and how they have been used

in the field of digital image processing. In this chapter we outline some of the

reasons why, out of all these models, we have chosen to direct our attention towards

the nonparametric MRF model. In Chapter 3 we look more closely at the MRF

model and give some background theory on the model. In particular we reiterate

some interesting results that demonstrate the equivalence between the MRF model

and the Gibbs distribution. In subsequent chapters we employ these results to the

development of the strong nonparametric MRF model.

Chapter 4 reviews the development of the parametric MRF model. It includes

various standard models and a section on how the parameters for these models are

estimated. It also looks at how these models are applied in synthesising, segmenting

and classifying textures.

Chapter 5 gives the construction details of our nonparametric MRF model. In

this chapter we also look at alternative approaches to building a nonparametric MRF

model. In Chapter 6 we incorporate the theory from the MRF-Gibbs distribution

equivalence into our own theory that elegantly demonstrates the equivalence between

the strong MRF model and the ANOVA log-linear construction. From this proof

we are able to derive the general ANOVA log-linear construction formula. To our

knowledge, this relationship has not been demonstrated before.

Chapter 7 details our own multiscale texture synthesis algorithm incorporating
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our novel pixel temperature function. Other variations of this synthesis algorithm

are also outlined. From this chapter we have published four papers showing the

merits of the nonparametric and strong nonparametric MRF models [152, 155, 153,

156]. Of particular interest is the texture synthesis by the strong nonparametric

MRF model, which identified textures that could be completely represented by just

third order statistics [153].

Chapter 8 outlines the common method for supervised classification. Because of

the problems we see for supervised classification in the area of terrain recognition

for SAR images, we introduce our own method for texture classification that does

not use supervised classification. From the results of this chapter we have published

another three papers demonstrating the use of our open-ended texture classification

algorithm, and in particular the advantage of the added functionality of the strong

nonparametric MRF model [104, 155, 158].

Finally Chapter 9 gives a short summary and conclusion. Possible future research

to cover any short comings in the application of our algorithms are also discussed.

There are also three appendices. The first one Appendix A, is taken from our

published paper “Extracting the cliques from a neighbourhood system” [154]. The

other two appendices show more results.



Chapter 2

Background

Research into texture models seeks to find a compact, and if possible a complete,

representation of the textures commonly seen in images. The objective is to use

these models for such tasks as texture classification, segmenting the parts of an

image with different textures, or detecting flaws or anomalies in textures.

Such research tends to focus on the key issues of feature selection, model se-

lection, parameter estimation, image sampling and goodness-of-fit. One recognised

problem is that many of the existing models only conform to specific types of natu-

ral texture. A simple model, with the power to represent all textures has not been

reported. In this thesis we develop a model, based on the MRF, which can indeed

capture a very wide range of textures, perhaps all textures. The only constraint

is that the textures should be statistically stationary over the spatial extent of the

image. We demonstrate this model is able to represent all the texture it was tested

on by using the model to generate new texture images. These had the same visual

characteristics as the one from which the model was developed.

2.1 Texture models

In order to define a texture model, one needs to assume something about the process

that created the texture. The models grouped as stochastic texture models are

designed on the assumption that the texture is a realisation of a stochastic process

on a random field. These models attempt to find the joint distribution over this

random field, with samples from the joint distribution being representative of the

texture of concern. Dubes and Jain [59] provided a taxonomy of the various different

21
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models used in describing a stochastic texture (see Fig. 2.1). Each model has its

own unique definition of how the local sites in the random field are related. These

local interactions are modelled to form a joint distribution.

2.1.1 Taxonomy

Random Field Models

Continuous MRF, Discrete

Time Series    MRF,
Automodel

Automodel Derin-Elliott

Casual Bilateral Gaussian Binomial Other

Autoregressive Other

SAR ARMA

Figure 2.1: Taxonomy of image models courtesy of Dubes and Jain [59].

Gaussian models

Digital images, as used in image processing, are defined as lattices of discrete inten-

sity, therefore to model such images as a continuous process is an artificial abstrac-

tion, nevertheless it does allow for some convenient processing to occur. A texture

realisation from a Gaussian model can be obtained reasonably quickly via the FFT

(Fast Fourier Transform) [59]. However, the Gaussian model imposes restrictions

on the texture it models. The Gaussian model requires all interactions between

pixels to be Gaussian distributed, it also only allows multiple pairwise interactions

to occur [39, 210].
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Autoregressive models

Autoregressive (AR) models, or simultaneous autoregressive (SAR) models, come

from the family of simultaneous models. These are 2D models derived from 1D time

series models [113, 114, 115]. While 1D time series have a past and present, an

equivalent ordering does not exist on the 2D discrete lattice, instead some sort of

ordering has to be imposed on the lattice. Other such models are simultaneous mov-

ing average (SMA) and simultaneous autoregressive and moving average (SARMA)

models [95]. For every SAR model there exists a unique conditional MRF model,

but the converse is not true, except for the Gaussian case [17]. The advantage of the

SAR model is that it is generally characterised by fewer parameters than its equiv-

alent MRF model. As a note, SMA and SARMA models do not have equivalent

MRF models. However that does not mean that an MRF model can not model a

texture generated by SMA or SARMA. Chellappa and Kashyap [37] demonstrated

the use of noncausal autoregressive models for the generation of textures.

Markov random field models

Markov random fields (MRFs) are popular for modelling images. They are able to

capture the local spatial textural information in an image. These models assume

that the intensity at each pixel in the image depends on the intensities of only the

neighbouring pixels. Theoretically they should be able to model any homogeneous

texture, unfortunately there are many practical barriers that make correct estima-

tion of the MRF very difficult. To make the estimation process a little easier it is

common to constrain an MRF model as an auto-model, which only contains pairwise

interactions. There are still many variations of the auto-model [17], e.g., Derin-Elliot

model [54], auto-normal model [40, 48], and the auto-binomial model [17, 50]. These

models were able to capture micro-textures well, but failed with regular and inho-

mogeneous textures. MRF models have been applied to various image processing

applications such as texture synthesis [50], texture classification [40, 120], image

segmentation [48, 194], image restoration [82], and image compression.

Spatial domain filtering

Spatial domain filters are the most direct way to capture image texture properties.

Early attempts concentrated on measuring the density of edges in an image. Fine
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textures tended towards a higher density than those of the coarser textures. The

Robert’s operator and the Laplacian operator [85, 130] are classical edge detectors.

Malik and Perona [136] used differences of offset Gaussian (DOOG) functions with a

nonlinearity function to model the pre-attentive texture perception of the human vi-

sual system. The nonlinearity was introduced to discriminate between textures with

the same mean and second order statistics. Their method works well for both syn-

thetic textures and natural textures. Similar work was done by Unser and Eden [200]

who also used spatial filters in conjunction with a nonlinear operator. A review of

a number of spatial domain and spatial frequency techniques is presented by Reed

and Wechsler [170].

Alternatively, spatial moments [130] may be used as spatial filters. From these

spatial filters a set of filtered images may be obtained, which may then be used as

texture features. Tuceryan [195] did this to successfully use moment-based features

for texture segmentation.

Fourier domain filtering

From psychological research it was determined that the human visual system uses

orientated frequency components to decompose an image for textural analysis [32].

Frequency analysis of a textured image can be achieved by applying an FFT to the

image and analysing the resulting image of the respective Fourier domain. Band

pass filtering leads to multi-resolution analysis of the image. Coggins and Jain [47]

used a set of frequency and orientation selective filters in a multi-band filtering

approach. They were able to successfully segment and classify a variety of natural

and synthetic textures. Smith [186] uses a set of band pass filters followed by zero

crossing detection to successfully generate a tree classifier of textures.

Gabor and wavelet models

The Fourier transform of a whole image may not be appropriate for some appli-

cations, in which case spatially localised analysis of the frequency content may be

more appropriate. To accomplish this, a windowing function is introduced into the

frequency analysis. This is applied by the window Fourier transform, defined for a

one-dimensional signal f(x) as:

Fw(µ, ξ) =

∫ ∞

−∞

f(x)w(x− ξ)e−j2πµxdx (2.1)
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When the window function w(x) is Gaussian, the transform becomes a Gabor trans-

form.

A wavelet transform is also a window Fourier transform, but it uses a set of

windowing functions that increase with frequency. This is done to increase the

resolution in the time (or space) domain as the central frequency of the band pass

filter is increased. The wavelet transform can be written as:

Wf,a(µ, ξ) =
1√
a

∫ ∞

−∞

f(x)h

(

x− ξ
a

)

e−j2πµxdx (2.2)

The use of 2D Gabor filters for modelling texture was proposed by Turner [197]

and Clark et al. [45] after Daugman [52] had proposed the use of Gabor filters for

the modelling of simple cells in the visual cortex of some animals. Later Gabor

filters were successfully used in segmentation and classification of textured images

by Farrokhnia and Jain [65, 109].

Fractal models

Many natural surfaces have a statistical quality of roughness and self-similarity

at different scales. Fractals are very useful in modelling these image properties.

Mandelbrot [137] proposed fractal geometry and was the first to notice its existence

in nature. Fractals are further explained by Barnsley [7] and Feder [66], and a

short introduction to fractal models is given by Haindl [95]. These models are

independent of scale, display self-similarity and are able to model some natural

textures like clouds, leaves and rivers [119, 118]. Fractal models are also used in

segmentation [76, 159, 160] by fitting a fractal function to local regions within an

image and segmenting the image according to the parameters associated with each

local fractal function. Some fractal texture segmentation techniques are given by

Chaudhuri et al. [35], Mosquera et al. [147]. Fractal models have also been used

for discriminating textures [76].

2.1.2 Applications for texture models

There are many applications for texture analysis. They range from automated in-

spection [57, 107, 182], medical image processing [41, 127, 135], document process-

ing [108, 109, 192], and of particular interest to us: remote sensing.
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Texture analysis has been extensively used for land classification of remotely

sensed images. Here the different terrain types can be identified by modelling their

respective texture. Haralick et al. [100] used grey level co-occurrence features to

identify differences in the texture of various terrain types. For a seven-class classifica-

tion problem, they obtained approximately 80% classification accuracy. Rignot and

Kwok [174] also used texture features from the co-occurrence matrix, but they ap-

plied them to SAR images pre-processed with speckle filters. Schistad and Jain [178]

compared various texture features for analysing SAR images. These included fractal

dimension, autoregressive Markov random field model, and grey level co-occurrence

texture features. Classification errors ranged from 25% for the fractal based models

to 6% for the MRF features. On the other hand, Du [58] and Lee and Philpot [131]

used local spectral texture features to segment SAR images, in particular Du [58]

used Gabor filters to successfully segment SAR images into water covered regions,

new forming ice, older ice and multi-year ice.

2.1.3 Performance of texture models

Ohanian and Dubes [151] studied the performance of various texture features under

the guidelines of detecting which features were optimal for classification. Out of

four fractal features, 16 co-occurrence features, four auto-binomial Markov random

field features, and 16 Gabor features, they found the co-occurrence features gave the

best classification rate at 88%, followed by fractal features at 84%. The MRF and

Gabor features achieved only 65% classification rate. However when they combined

the fractal features with the co-occurrence features they obtained a classification

rate of 91%.

This does not suggest that co-occurrence features are the single most important

features. For one, it is not possible to reconstruct texture from the features, therefore

it can not be demonstrated that the features capture all the characteristics of texture.

However, what is more at odds with Ohanian and Dubes [151] findings, are the

results obtained by Smith [187] when he repeated the experiment. Smith [187]

carried out the experiment over the same data set and obtained the results shown in

Table 2.1. These results differ significantly from those of Ohanian and Dubes, with

the classification rates being generally higher than Ohanian and Dubes best results.

Smith [187] notes that the models were not implemented exactly as by Ohanian and

Dubes, but with functionality common within the literature [40, 70].
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Table 2.1: MeasTex winner-take-all (percentage correct) scores

Test Suite Gabor GLCM Fractal GMRF

all16 0.9360 0.8115 0.7256 0.9688
fractal 0.9414 0.5840 0.7188 1.0000
leather 0.8379 0.7363 0.4844 0.8848
mrf 0.9980 0.9961 0.9551 0.9980
paint 0.9668 0.9355 0.8477 0.9941
SUMMARY 0.9360 0.8127 0.7463 0.9691

These results indicate the care that must be taken when accepting comparison

results. The same texture images and the same paradigms (albeit different imple-

mentations) were used, but significantly different results were obtained. In fact, if

these models were to be ranked based on Smith’s [187] results we would have (best

to worse) Gaussian MRF (GMRF), Gabor Energy, GLCM, and Fractal Dimension.

This is in stark contrast to rankings based on Ohanian and Dubes [151] findings of

GLCM, Fractal, GMRF and Gabor Energy.

Table 2.2 gives the MeasTex [187] test suite scores for the implementations of

GLCM, Gabor Energy and GMRF methods as described above. Two patterns

emerge from this table. On microtextures, the algorithms are ranked thus: GMRF,

Gabor Energy and GLCM. On macrotextures, the algorithms are ranked thus: Ga-

bor Energy, GMRF and GLCM. Natural textures (Brodatz, grass, material, and

VisTex [203]), although containing a mix of macro- and microtextures they are pre-

dominantly microtextures.

DeBonet and Viola[25] used a nonparametric multiscale statistical model to

achieve 100% correct classification on the MeasTex Brodatz test suite [187]. They

were also able to obtain 98% correct classification on the MeasTex Lattice test

suite [187]. This is a substantial improvement on the results shown in Table 2.2.

2.1.4 Accuracy of texture models

Our model based texture analysis methods are constructed on the premise that

not only can they be used to describe texture, but they can be used to synthe-

sise texture as well. As outlined in Section 2.1.1, there are many different mod-

els on which to base a synthesis algorithm, and many attempts to demonstrate
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Table 2.2: MeasTex test suite summary scores

Test Suite GLCM Gabor GMRF

bomb 0.8406 0.8460 0.9446
bombRot 0.6829 0.9248 0.9603
Brodatz 0.9239 0.9451 0.9713
grass 0.9162 0.8900 0.9483
material 0.9650 0.9678 0.9797
VisTex 0.8523 0.9066 0.9355
lattice 0.6953 0.8919 0.7396
latticeRot 0.6643 1.0000 0.9647
mortar 0.7150 0.8758 0.7551
mortarRot 0.6055 0.9921 0.9626
mortarRotS 0.6248 1.0000 0.9763

adequate performance. These models have ranged from the fractal [159], autore-

gressive (AR) [36, 37, 53], moving average (MA) [95], autoregressive moving average

(ARMA) [115], Markov [101], auto-binomial MRF [1, 50], auto-normal MRF [40, 48],

Derin-Elliott [54], Ising [121, 161, 189], and log-SAR model [72] which was used to

synthesise synthetic aperture radar images. A summary of these texture synthesis

algorithms is provided by Haindl [95], Haralick [99], and Tuceryan and Jain [196].

These synthesis algorithms have been successful in modelling microtextures, but

they have been less than successful in modelling macrotextures. As natural tex-

tures [28] consist of a mix of macro– and microtextures, we can surmise that these

models are less than optimal for modelling such textures. This also implies that

these models have not been able to capture all the characteristics of natural tex-

tures, and therefore can not be regarded as “ideal” texture models for the purpose

of open-ended texture classification.

Recent advances in texture synthesis have produced models that are capable of

synthesising natural textures, textures that contain both structural and statistical

elements (i.e., a mix of macro– and microtextures). These models are based on the

stochastic modelling of various multi-resolution filter responses [23, 103, 149, 211],

but they do not use third or higher order statistics, and it is undetermined whether

the chosen filters are globally optimal for all textures. Julesz [110] suggested there

was textural information in the higher order statistics, and Gagalowicz et al. [75]

used third order statistics to generate some natural textures. Popat and Picard [164]

successfully used a high-order, causal, nonparametric, multiscale MRF model to
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synthesise some highly structured natural textures.

2.2 Hypothesis: high order statistics are required

to model texture

Texture models contain the high dimensional statistical information of an image.

The dimensionality of the statistically information refers to the number of pixels that

are inclusively statistically dependent. A one dimensional texture model describes

the statistical information for a single pixel. This information is readily captured

by the histogram of the image. Two dimensional statistical information describes

the intensity distributions of two pixels spatially separated from each other. The

GLCM textural features designed by Haralick et al. [100] is an example of features

that use a set of two dimensional statistical information.

Texture models, such as the auto-models, AR, MA, and ARMA, capture the

high dimensional statistical information as a multi-dimensional probability density

function (PDF) defined over neighbourhood of spatially separate pixels. Each di-

mension uniquely represents a particular pixel in this neighbourhood. However,

parametric texture models typically compact the multi-dimensional PDF into a set

sub-functions. The sub-functions are each defined over a subset of the total number

of dimensions, whereby the multi-dimensional PDF is evaluated as a function of the

sub-functions.

In this thesis, statistical order is defined with respect to the sub-functions. Given

that a model has been broken down into is sub-functions, the statistical order of the

texture model is defined as the maximum number of dimensions encompassed by any

one of the sub-functions. The texture models previously listed all use sub-functions

that are defined over no more than two dimensions (or pixels in the neighbourhood),

and are therefore referred to as second order models or auto-models by Besag [17].

Markov random field texture models are defined as a multi-dimensional PDF

over a neighbourhood. Parametric Markov random field models evaluate this multi-

dimensional PDF as a function of sub-functions called potential functions. Each

potential function is defined over a subset of pixels in the neighbourhood. These

subsets are known as cliques [78]. A second order MRF model is therefore one that

contains only single and pairwise cliques, i.e., cliques that contain no more than two

pixels.
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One of the most commonly used second order models is the GMRF model [39],

popular because of its generality and because it requires only three Fast Fourier

Transforms (FFTs) [59] instead of a long iteration process to synthesise texture.

However the GMRF is unable to realistically model complex natural textures, for

instance as seen in the Brodatz album [6, 95]. We hypothesise that to model such

natural textures, third or higher order models are required [111].

We have chosen the MRF as the basis of our texture model because of its flexibil-

ity in defining the statistical dimensionality and order. However parametric versions

of the MRF model mainly use just second order statistics (i.e., auto-models [17]).

This is due to parameter estimation problems for MRF models when the statistical

order is greater than two [181]. However we show the nonparametric version of the

MRF model is capable of modelling these higher order statistical properties.

2.3 Markov random field (MRF) model

The first step of texture analysis is to select a model. We have chosen “Markov

Random Field” (MRF) as our model for the reason that it requires only one as-

sumption to be made of the texture. That assumption is that the value of a single

pixel is only conditionally dependent on its neighbouring pixels. This is how an

MRF is defined [82]. In a limiting case, a pixel could be dependent on all other

pixels of the same texture, i.e., has a complex spatial structure. The other limit-

ing case being that a pixel is not dependent on any other pixel (in which case the

texture can be described by a simple histogram distribution), i.e., has no spatial

structure at all. Either way the assumption does not hinder the generality of the

model. Theoretically every homogeneous texture can be modelled as an MRF.

For an MRF model to be valid, it must have a valid joint distribution for a ran-

dom field. The joint distribution defines the probability for a particular realisation

of that field. This probability has to be defined such that for any two realisations

of the same texture, the probabilities are similar [17].

The joint distribution of an MRF model is calculated from the Local Conditional

Probability Density Function (LCPDF) [17], which defines the probability distribu-

tion of a pixel being a particular value given the neighbouring pixel values. This is

fortuitous, as in general we do not have an ensemble of textured images from which

to directly construct the joint distribution. Instead we usually only have the one
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image of any one texture. Therefore we use the LCPDF to capture the statistics of

the texture and assume they are the general statistics needed to describe all images

of the texture.

To build the LCPDF one needs to sample the texture at every pixel position

to estimate the LCPDF from the samples [19, 20, 81, 181]. The accuracy of the

LCPDF estimate is dependent on the relative sample space size compared with the

number of samples [169, 175]. Now the number of samples is approximately equal to

the number of pixels in the image. However the sample space, (i.e., the domain over

which the LCPDF is to be estimated) is equal to the number of grey levels raised to

the power of the number of pixels in the neighbourhood plus one. The smaller the

sample space the more reliable the estimate is for a given training texture [175, 183].

If the sample space is too big then the LCPDF estimate will not capture the general

statistics of the texture and the joint distribution will not represent the texture [59].

For the LCPDF estimate to capture the general statistics of the texture, the

number of neighbouring pixels used in the estimate has to be limited. However this

is dependent on the type of function artificially imposed on the texture and used

as the LCPDF. If the function is a compact parametric function like the Gaussian

function then the number of neighbouring pixels that can be used in the estimate

is slightly higher than if the function was completely nonparametric [183], provided

the texture fitted the GMRF model. Every constraint imposed on the function to be

used to represent the LCPDF [1, 89, 140, 175], increases the number of neighbouring

pixels that can be used in the estimate. Of course one seldom has prior knowledge

about the texture that allows the LCPDF to be properly constrained. However there

are also some unobvious compulsory restrictions on the LCPDF that are needed

to make the joint distribution of the MRF legitimate (which will be discussed in

Chapter 3). Failer to observe these restrictions will result in problems when trying

to use the LCPDF to classify or generate realisations of the MRF [59].

Two new problems now assert themselves:

1. How to find which neighbouring pixels interact with their local pixel and there-

fore need to be included in the neighbourhood of the LCPDF estimate.

2. How to model the interactions between the neighbouring pixels and the refer-

ence pixel.

To date there has not been a conclusive answer to the first problem [78], although
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there have been some attempts at defining a cost function to neighbourhood selec-

tion [181, 188] based on the stochastic complexity of Rissanen [176]. The problem

is that under normal circumstances two or more variables are said to interact if

their values are correlated. However the presence of long range correlations in an

image is not necessarily evidence of long range pixel interaction, some long range

correlations can be fully accounted for by (strong) short range interactions between

pixels [121, 161]. In this thesis we introduce a new approach to identifying the lower

bound of a neighbourhood.

The second question has been answered with some degree of success [17]. Un-

fortunately, for the interactions to be adequately modelled, a specific model has to

be imposed onto the LCPDF. The most common models used are the auto-models

which only allow pairwise interactions to occur. Commonly used auto-models are

the GMRF model [39] and the binomial auto-model of Cross and Jain [50].

Previous experiments have not been able to correctly model natural textures

with auto-models when structure and a reasonable range of grey levels have been

present [1, 6, 59, 95, 105]. In particular Chen and Dubes [42] used a goodness-of-

fit test to demonstrate that second-order models are not appropriate for binarised

versions of Brodatz (i.e., natural) textures. In this thesis we show that it is possible

to model and synthesise these natural textures if more complex interactions between

pixels are incorporated into the texture model. These interactions between pixels

involve groups of pixels known as cliques, where the number of pixels in a clique

defines the statistical order of the interaction, and the maximum order defines the

statistical order of the MRF model. Like the neighbourhood problem stated in

question one, there is again no concise way for determining if an interaction is present

between pixels, whether it be third-order, pairwise, or singular (no interaction) [181].

Parametric versions of the MRF model are prohibitive for modelling statistical

interactions greater than second-order. This is due to the relatively large number

of parameters in the LCPDF that need to be estimated with respect to the low

density of sample data in the sample space. The size of this sample space is equal

to the number of grey levels raised to the power of the number of dimensions, where

the number of dimensions is equal to the number of pixels in the neighbourhood.

With high-dimensional LCPDFs, especially when there are many grey levels, the

feature space becomes very barren of sample data [11]. This leads to problems

when estimating the many parametric sub-functions designed to characterise the

interactions in the cliques, although Modestino and Zhang [144] did try to formalise
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the sub-functions design. The sparse nature of the sample space is less of a problem

for the nonparametric MRF model [164].

2.3.1 Problems in using MRF models

If the texture is a GMRF then there are less problems in modelling it. The neigh-

bourhood size can be adequately selected [116], the model parameters can be effi-

ciently estimated [59, 95], and if the lattice is toroidal a rapid FFT based synthesis

algorithm can be used [95]. The GMRF model is the exception of all the MRF mod-

els, for the rest, there is little formal methodology for neighbourhood selection [181],

model selection is almost arbitrary [105, 181], and parameter estimation can involve

a long arduous iterative process, especially if the Markov Chain Monte Carlo method

is used [105, 181].

With texture synthesis there is a problem of phase discontinuity when either

the Metropolis algorithm [142] or the Gibbs sampler [82] is used to synthesise an

image via an iterative process [1]. Phase discontinuity occurs when the parameters

of an MRF model have not been properly constrained [181]. Dubes and Jain [59]

demonstrated that under such conditions when parameters are specified so that local

correlations develop into long range correlations [121, 162], the iterative synthesis

algorithm does not converge to the desired texture. Instead one particular grey level

can start to dominate the iterative process. To solve this problem Cross and Jain [50]

used an exchange algorithm which kept the histogram of the image constant through

the synthesis process. However this fix does not properly embrace the sentiment that

any realisation should be possible from an MRF.

The iterative process of texture synthesis is not nearly as arduous as that re-

quired for texture segmentation. For texture synthesis all that is required is to

produce an image with a highly likely representation with respect to the joint prob-

ability [78]. On the other hand, texture segmentation is an optimisation problem

requiring a search for the maximum likely representation with respect to the joint

probability[38]. This is generally achieved through an optimisation algorithm such

as simulated annealing [78, 82, 79].

The difficulty with MRF texture classification is that not only does it require

prior knowledge of the types of textures present, but the normalising constant of the

MRF model may need to be evaluated [59]. This is tractable for GMRF models [34,

40], but difficult for other MRF models [59]. Alternatively, a more practical approach
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is the one used by Chen [43] whereby the parameters themselves, estimated from

the samples of each pattern class, are used as the feature vectors to a standard

maximum likelihood algorithm.

Besides these difficulties, MRF models have demonstrated their ability to model

texture [50, 54, 101], for such applications as; image restoration [82], texture seg-

mentation [54, 106], and classification [34, 40]. However there are still issues that

need to be further researched, such as the specification of MRF models, modelling

noise processes, performance evaluation, parameter estimation, the phase transition

phenomenon, and the comparative analysis of alternative procedures [59]. Also there

has been little work in the nonparametric estimation of the MRF model [78].

2.4 Nonparametric Markov random field

The nonparametric MRF model is based on estimating the LCPDF by building a

multi-dimensional histogram of the homogeneous textured image. The number of

dimensions used in the histogram is equal to the number of neighbours in the neigh-

bourhood plus one, which is equal to the statistical order of the model. Although

it would be nice to test larger and larger statistical orders of the texture, there is a

limit to the order which may be successfully modelled. This is due to the curse of

dimensionality [11], which occurs when modelling with a limited amount of sample

data in a high dimensional space. Silverman [183] showed that to maintain rea-

sonable accuracy in the model, the amount of sample data needs to grow almost

exponentially with the dimensionality of the histogram. As we are dealing with a

limited amount of sample data from our training image, the accuracy of the model

will rapidly decrease as the dimensionality of the histogram increases. In such cases

where the sample data is sparsely dispersed over the histogram space, nonpara-

metric estimates of the model will tend to be more reliable than their parametric

counterparts. This is because nonparametric estimates only model those areas of

the histogram that contain data rather than trying to fit the model to the whole of

the histogram space as with parametric estimates.

One nonparametric method of modelling the multi-dimensional histogram is to

cluster the histogram data and model each cluster as a standard multi-dimensional

Gaussian density. Popat and Picard [164] used precisely this method with great

success to produce a nonparametric causal model for texture synthesis. With their

method, they were able to model up to 14-dimensional histograms. However, the
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method did not extrapolate well to higher dimensional histograms. In this thesis

we model the histogram in a similar way, except that we model each point in the

histogram with a standard multi-dimensional Gaussian density. This is the Parzen

density estimation technique [60].

Texture synthesis is performed via our own multiscale synthesis algorithm incor-

porating a novel pixel temperature function. As part of the synthesis process we will

show that the pixel temperature function initially reduces the dimensionality of the

multi-dimensional histogram, thereby alleviating the problem associated with cor-

rectly estimating the model for a high-dimensional space. This means we are able to

use large multi-dimensional histograms to represent the texture. In fact the model

presented in this thesis has been used to synthesise textures using 81-dimensional

histograms with gratifying results. For synthesis purposes, we see no theoretical

limit to the size of the multi-dimensional histogram that may be used to represent

the texture, provided that it can be accommodated for by the training image.

Whilst the nonparametric MRF model just described is shown to allow texture

synthesis, it is not suited as it stands to texture segmentation and classification. This

is because we need to find the lowest order model which is capable of representing the

texture. If the model has an unnecessarily high order, it will only classify textures if

unnecessary detail is matched [211]. A balance must be attained so that the statistics

contain the unique characteristics of the texture. For this we introduce the strong

MRF model. With it we can adjust the order of the statistics used to model the

texture. This second model is based on Moussouris’ strong MRF model [148]. In this

thesis we show that Moussouris’ strong MRF model is equivalent to the Analysis-of-

variance (ANOVA) model [67], which allows us to use the theorems of the ANOVA

model [22] for the strong MRF model.

For the open-ended classification of texture, we use our strong MRF model to

find the lowest order statistics that may be used to uniquely represent the texture.

The model is then used to collect a sample of statistics from an image segment

we wish to classify. This sample of statistics is compared to a sample of statistics

obtainable from the training texture. The classification is made on the basis of how

confident we are that the two sets of statistics are from the same distribution. Our

open-ended texture classification results are presented in the form of a probability

map showing the associated goodness-of-fit for each pixel and its surrounding area

being classed as being from the same model that describes the training texture.
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2.4.1 Advantages in using nonparametric MRF models

We present a nonparametric MRF model that can capture the high order statistical

characteristics of a texture, demonstrated by the synthesis of some quite complex

textures from the Brodatz album [28]. To show that our nonparametric MRF model

is correctly synthesising these natural textures, we take a small section of texture and

synthesise the same texture over a larger area. The subjective similarity between the

original and synthesised textures over the larger area demonstrates that the texture

model has indeed captured all of the essential characteristics of the texture. We

found that the synthesis process generated textures with few phase discontinuities.

We show how we can adjust the statistical order of our nonparametric MRF

model while retaining the original dimensionality. This was accomplished through

some original work showing the mathematical equivalence of Moussouris’ strong

MRF model [148] and the analysis-of-variance (ANOVA) model [67]. With this new

strong nonparametric MRF model we present new results for open-ended classifica-

tion of texture.

The model presented in this thesis would be unsuitable for image compression

or fast texture synthesis, since for such purposes a parametric version of the model

would be required. However, as the model is capable of accurately synthesising a

wide variety of textures, it does represent the basis of a complete texture model.

With such a model it would be possible to start contemplating the existence of an

ideal model, one that could be used for open-ended texture classification. When

we used this model for such an application we obtained a classification accuracy of

87% on a set of a hundred VisTex texture mosaics [49]. The advantage of using

a nonparametric model for such an application is that it does not involve a long

training process to obtain some thing close to an ideal model. That is a model

that is capable of synthesising visually similar representations of a training texture.

Therefore new textures can be presented to the model to perform open-ended texture

classification at will, and the overall computational time would be substantially more

favourable than for a parametric MRF model.



Chapter 3

MRF Model

This thesis is primarily focused towards MRF models. Consequently, we present

here a review of some of the fundamental theorems and proofs on MRFs. However

in order to be consistent, the terminology has been standardised with the remainder

of this thesis. These theorems and proofs also provide a foundation for our own

work on the strong nonparametric MRF in Chapter 6.

3.1 Random field preliminaries

Geman [78] uses the following notation for random fields:– Denote the sites of a

lattice by S = {s1, s2, . . . , sN}, with a variable Xs at each site s ∈ S. The complete

set of variables for the whole lattice is denoted by X = {Xs, s ∈ S}. Each variableXs

is assigned a value xs from its state space Λs, such thatXs = xs, xs ∈ Λs ⊂ < ∀s ∈ S.

A particular configuration for the lattice is given as {X1 = x1, X2 = x2, . . . , XN =

xN} which is abbreviated to {X = x} where x = (x1, x2, . . . , xN ) or x = {xs} for

convenience. The configuration space for the variable x is denoted by Ω, whereby,

Ω =
∏

s∈S

Λs, Λs ⊂ < (3.1)

For simplicity we may assume a common state space, Λ
.
= {0, 1, 2, . . . , L−1}, where

L is the number of grey levels. An image is modelled by defining each pixel in the

image as a random variable Xs, s ∈ S, and the grey level associated with the pixel

equal to the value xs. Given that xs comes from a common state space Λ, all possible

images x = {xs} are then contained within the configuration space Ω = ΛN .

37
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Let Π be the (joint) probability measure on Ω with Π(X = x) > 0 ∀ x ∈ Ω.

Besag [17] proved that the joint distribution Π(x) is uniquely determined by its Local

Conditional Probability Density Function (LCPDF) Π(Xs = xs|Xr = xr, r 6= s),

which we will rewrite as:

Πs(xs|x(s)) = Π(Xs = xs|Xr = xr, r 6= s), s ∈ S,x ∈ Ω (3.2)

where x(s) = {xr, r 6= s}.
We state this as,

Proposition 3.1 The joint distribution of X = {Xs} is uniquely determined by its

LCPDFs.

Proof: This proof is from Besag [17]. We will verify that for any x,y ∈ Ω:

P (x)

P (y)
=

N
∏

i=1

P (xi|x1, . . . , xi−1, yi+1, . . . , yN)

P (yi|x1, . . . , xi−1, yi+1, . . . , yN)
(3.3)

Proof of Eq. (3.3) follows. Clearly, we may write

P (x) = P (xN |x1, . . . , xN−1)P (x1, . . . , xN−1). (3.4)

However, P (x1, . . . , xN−1) cannot be easily factorised in a useful way since, for ex-

ample, P (xN−1|x1, . . . , xN−2) is not easily obtained from the given conditional dis-

tributions. Nevertheless, we can introduce yN , write

P (x) =
P (xN |x1, . . . , xN−1)

P (yN |x1, . . . , xN−1)
P (x1, . . . , xN−1, yN) (3.5)

and now operate on xN−1 in P (x1, . . . , xN−1, yN). This yields

P (x1, . . . , xN−1, yN) =
P (xN−1|x1, . . . , xN−2, yN)

P (yN−1|x1, . . . , xN−2, yN)
P (x1, . . . , xN−2, yN−1, yN), (3.6)

after similar introduction of yN−1. Continuing the reduction process, we eventually

arrive at Eq. (3.3). Assuming that two probability measures Π, µ on Ω have the

same LCPDFs, we have Π(x)
Π(y)

= µ(x)
µ(y)

which implies Π = µ [78].

�
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3.2 General Markov random field model

The property of a Markov Random Field (MRF) is that: a variable Xs at a site s on

a lattice S can be equal to any value xs ∈ Λ, but the probability of Xs = xs is, and

only is, conditional upon those values xr at the neighbouring sites of s. Given that

the set of neighbouring sites of s is denoted by the neighbourhood Ns ⊂ S, then an

MRF is a process X = {Xs} such that:

Π(x) > 0 ∀x ∈ Ω (3.7)

Πs(xs|x(s)) = P (xs|xr, r ∈ Ns) ∀x ∈ Ω, s ∈ S (3.8)

For each site s there is associated a neighbourhoodNs, and the set of neighbourhoods

is the neighbourhood system denoted as N = {Ns ⊂ S, s ∈ S}.
The Hammersley-Clifford theorem, which is also referred to as the MRF-Gibbs

equivalence theorem, and proved in [17, 92, 148, 78], gives form to the LCPDF so

as to define a valid joint distribution Π(x). The theorem implicitly requires the

neighbourhood system to adhere to the following criteria.

1. s 6∈ Ns

2. s ∈ Nt ⇔ t ∈ Ns

This implies that the neighbourhoods must be symmetrical and self similar for ho-

mogeneous MRFs.

The symmetrical neighbourhood systems employed in this thesis are the same as

used in [78, 82] for which the neighbourhood system N o = {N o
s , s ∈ S} is defined

as

N o
s =

{

r ∈ S : 0 < |s− r|2 ≤ o
}

, (3.9)

where |s− r| is the Euclidean distance between two points s, r ∈ S. The neighbour-

hood N o
s is defined by the neighbourhood order o (but this does not refer to the

statistical order of the neighbourhood). A first order neighbourhood system o = 1

is shown in Fig. 3.1(a), which is also called the nearest neighbour neighbourhood

system consisting of the four nearest adjacent pixels. The second and eighth order

neighbourhood systems for o = 2 and o = 8 are shown in Figs. 3.1(b), and (c)

respectively.
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(a) (b) (c)

Figure 3.1: Neighbourhoods: (a) The first order neighbourhood o = 1 or nearest-
neighbour neighbourhood for the site s = ‘•′ and r = ‘◦′ ∈ Ns; (b) second order
neighbourhood o = 2; (c) eighth order neighbourhood o = 8.

3.3 Gibbs distribution

The Gibbs distribution is a representation for a positive measure Π on Ω. The Gibbs

distribution is defined with respect to a set of potential functions V = {VA : A ⊂
S}, VA : Ω→ <. The essential ingredients of the potential functions V are V∅(x) = 0

and VA(x) = VA(x′) if xs = x′s, ∀ s ∈ A. V is normalised if VA(x) = 0 whenever

xs = 0 for some s ∈ A, where we assume 0 ∈ Λ, although any other consistent value

would do. Normalised potentials ensure unique representation but really have no

other practical importance.

The energy associated with a particular realisation {X = x} is defined as,

U(x) = −
∑

A⊂S

VA(x) (3.10)

and the joint probability is given as,

Π(x) =
1

Z
exp {−U(x)} (3.11)

where Z is the normalising constant or partition function,

Z =
∑

x∈Ω

exp {−U(x)} . (3.12)

Generally Z is intractable both analytically and numerically. It is however tractable



3.3. GIBBS DISTRIBUTION 41

for the GMRF model [34, 40]

3.3.1 Cliques

Given a neighbourhood system N , a clique is a set C ⊆ S if every pair of distinct

sites in C are neighbours. That is, given s, r ∈ C, s 6= r implies s ∈ Nr. The

single site subset is also a clique. Let C denote the set of cliques defined on S with

respect to N , and let Cs denote the local clique set for a neighbourhood Ns such

that Cs = {C ∈ C, s ∈ C}. Cliques are important when considering the equivalence

between MRFs and the Gibbs distribution.

(a) (b) (c)

(f)

(e)(d)

Figure 3.2: Neighbourhoods and cliques: (a) The first order neighbourhood o = 1 or
nearest-neighbour neighbourhood for the site s = ‘•′ and r = ‘◦′ ∈ Ns; (b) second or-
der neighbourhood o = 2; (c) eighth order neighbourhood o = 8. (d) local clique set
for nearest-neighbour neighbourhood; (e) clique types for nearest-neighbour neigh-
bourhood; (f) additional clique types for second-order neighbourhood.

Figures 3.2 (a), (b), and (c) show the neighbourhood configurations for o =

1, 2 and 8 respectively. If we represent the lattice S on a rectangular grid Zm =

{(i, j) : 1 ≤ i, j ≤ m} where S = Zm, N = m2, then the first-order or nearest-

neighbour system N 1
i,j = {(i, j − 1), (i, j + 1), (i − 1, j), (i + 1, j)}. The cliques
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associated with this neighbourhood system are then those subsets of S whereby

{(i, j)}, {(i, j), (i, j + 1)} and {(i, j), (i + 1, j)} ⊂ Zm, as shown in Fig. 3.2 (e).

The cliques contained in the local clique set Cs of N 1
i,j are then those cliques {(i, j)},

{(i, j), (i, j + 1)}, {(i, j), (i+ 1, j)}, {(i, j), (i, j − 1)} and {(i, j), (i−1, j)}, as shown

in Fig. 3.2 (d). For the second-order neighbourhood N 2
s , the set of cliques C are

those of type shown in Figs. 3.2 (e) and (f).

The number of clique types grows almost exponentially with increasing order o.

In Appendix A we illustrate a general method for extracting the local clique set from

any neighbourhood system. We have published this method in “IEE Proceedings

Vision, Image and Signal Processing” [154].

Geman and Geman [82] mainly experimented with small clique sizes. They found

that they could model their X quite well with single site and pairwise cliques. How-

ever they realised that more complex images might have to be modelled with more

complex cliques, i.e., cliques of three or more sites. They also suggested that this

extra complexity could be accommodated while maintaining modest neighbourhood

sizes by developing a hierarchy of MRFs, i.e., model X with various little neighbour-

hoods that contain simple clique structures, instead of one large neighbourhood.

3.3.2 The N -Potential V

An N -Potential V not only fulfils all previous criteria for a potential function

but, given a neighbourhood system N and its corresponding set of cliques C, a

N -Potential V is defined such that,

VC(x) = 0 if C 6∈ C. (3.13)

The Gibbs distribution Π is then defined as,

Π(x) =
1

Z
exp

{

∑

C∈C

VC(x)

}

, (3.14)

where the normalising constant or partition function is,

Z =
∑

x∈Ω

exp

{

∑

C∈C

VC(x)

}

. (3.15)
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A representation for the N -Potential V is given by Grimmett [92] and stated

below in Proposition 3.2. However we will first introduce the Möbius inversion

theorem [177] which is used in Grimmett’s representation.

Theorem 3.1 (Möbius inversion theorem) For arbitrary real functions F and

G defined on the subsets A, B and C of some finite set.

F (A) =
∑

B⊆A

G(B) iff G(B) =
∑

C⊆B

(−1)|B|−|C|F (C) (3.16)

or, equivalently,

F (A) =
∑

B⊆A

∑

C⊆B

(−1)|B|−|C|F (C) (3.17)

where |A| = number of sites in set A.

Proof of Theorem 3.1: This elegant proof is by Moussouris [148]. The iden-

tity Eq. (3.17) holds because F(A) occurs only once in the sum, whereas any C

with m fewer elements than A can be extended (mj ) ways to Bs containing j of

the missing elements; since |B| − |C| = j, the total coefficient of F (C) is then
∑m

j=0(−1)j(mj ) = (1− 1)m = 0.

�

Before we continue, we need to introduce more notation. For x ∈ Ω, A ⊂ S,

denote

xA = {xAs , s ∈ S}, xAs =

{

xs, s ∈ A
0, s 6∈ A.

(3.18)

For the rest of the thesis the notation C and C ′ will be specifically reserved for

representing cliques for which C,C ′ ∈ C.

Proposition 3.2 Any Π > 0 is a Gibbs distribution with respect to N -potentials,

VC(x) =
∑

C′⊆C

(−1)|C|−|C′| log Π(xC
′

), ∀x ∈ Ω, s ∈ S. (3.19)

Moreover, for any element s ∈ C,

VC(x) =
∑

C′⊆C

(−1)|C|−|C′| log Πs(x
C′

s |xC
′

(s)), ∀x ∈ Ω, s ∈ S, s ∈ C (3.20)
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where C,C ′ ∈ C.

Proof of Proposition 3.2: is given by Grimmett [92] and Moussouris [148],

but a thorough proof is given by Geman [78], which is the one given here.

1. Π is Gibbs with respect to the potential:

V ′
C(x) =

∑

C′⊆C

(−1)|C|−|C′| log[Π(xC
′

)/Π(0)] (3.21)

where,
{

F (C ′) = log[Π(xC
′

)/Π(0)]

G(C) = VC(x)
(3.22)

where x is fixed and 0 = {0, 0, . . . , 0}. An important difference between the

potential VC Eq. (3.19) and the above potential V ′
C Eq. (3.21) is

V∅ = log Π(0) (3.23)

where as

V ′
∅ = log[Π(0)/Π(0)] = 0 (3.24)

which is how a Gibbs potential is defined. This is the only difference, which

is inconsequential as indicated by the note below. Assuming Eq. (3.21) and

using the Möbius inversion formula,

log
Π(x)

Π(0)
= log

Π(xS)

Π(0)
= F (S) =

∑

C⊆S

G(C) =
∑

C⊆S

V ′
C(x) (3.25)

Thus, Π(x) = Π(0)e−U(x), where U(x) = −∑C⊆S V
′
C(x), and Z = (Π(0))−1,

i.e., Π is a Gibbs distribution. Note:

Π(x) = Π(0) exp

{

∑

C⊆S

V ′
C(x)

}

(3.26)

= Π(0) exp

{

∑

C⊆S

∑

C′⊆C

(−1)|C|−|C′| log[Π(xC
′

)/Π(0)]

}

= Π(0) exp

{[

∑

C⊆S

∑

C′⊆C

(−1)|C|−|C′| log Π(xC
′

)

]

−
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[

∑

C⊆S

∑

C′⊆C

(−1)|C|−|C′| log Π(0)

]}

= Π(0) exp

{

∑

C⊆S

∑

C′⊆C

(−1)|C|−|C′| log Π(xC
′

)

}

exp {− log Π(0)}

=
Π(0)

Π(0)
exp

{

∑

C⊆S

∑

C′⊆C

(−1)|C|−|C′| log Π(xC
′

)

}

= exp

{

∑

C⊆S

VC(x)

}

(3.27)

From the Möbius inversion of Eq. (3.26) we obtain Eq. (3.21) but from the

Möbius inversion of Eq. (3.27) we obtain Eq. (3.19), therefore VC and V ′
C are

interchangeable provided the correct corresponding Eq. (3.26) or Eq. (3.27) is

used.

2. V is normalised: For any s ∈ C,

VC(x) =
∑

s6∈C′⊆C

(−1)|C−C′| log Π(xC
′

) +
∑

s∈C′⊆C

(−1)|C−C′| log Π(xC
′

)

=
∑

C′⊆C−s

(−1)|C−C′|
[

log Π(xC
′

)− log Π(xC
′+s)
]

(3.28)

If xs = 0, then xC
′

= xC
′+s ⇒ VC(x) = 0.

3. Eq. (3.19)⇔ Eq. (3.20). This follows from Eq. (3.28) by applying the identity

Π(xC
′

)

Π(xC′+s)
=

Πs(x
C′

s |xC
′

(s))

Πs(xC
′+s

s |xC′+s
(s) )

, s 6∈ C ′ (3.29)

4. VA = 0 ∀A 6∈ C. This will be proved via the equivalence theorem in Section 3.4,

where it will be shown that VA = 0 ∀A 6∈ C if and only if Π is a MRF.

�
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3.4 MRF — Gibbs distribution equivalence

The MRF–Gibbs distribution equivalence was first established by Hammersley and

Clifford [96] but never published as they preferred the proof given by Besag [17].

An alternative proof based on the Möbius inversion theorem [177] was given by

Grimmett [92] and Moussouris [148] which was rewritten by Geman [78].

The MRF–Gibbs distribution equivalence theorem gives form to the LCPDF of

an MRF by expressing it in terms of N -potentials VC(x) [82, 78],

P (xs|xr, r ∈ Ns) =
1

Zs
exp

{

∑

C∈Cs

VC(x)

}

, (3.30)

where Zs is the local normalising constant Zs =
∑

λs∈Λ P (λs|xr, r ∈ Ns) and the

summation is over the local clique set denoted by Cs = {C ∈ C, s ∈ C}.
An important point made by Dubes and Jain [59] is that, although the MRF–

Gibbs Equivalence states that there exists an MRF model for every Gibbs distri-

bution and vice-versa, this is only true when the Gibbs distribution is defined with

respect to N -Potentials and the MRF may be expressed as Eq. (3.30). It is possible

to define an MRF that does not obey Eq. (3.30) but this could lead to a model

whose joint distribution does not exist, and therefore produce inconsistent results.

Alternatively it is also possible to define a Gibbs distribution that does not use

N -Potentials, but then this could lead to a model whose local distribution does not

exist. For such a model it would be difficult to estimate the parameters and to sam-

ple the distribution to produce realisations. Therefore it is advisable to limit oneself

to MRF and Gibbs models that are defined with respect to the clique structure.

Theorem 3.2 (MRF–Gibbs Equivalence) Given a neighbourhood system N , Π

is a Gibbs distribution with respect to N if and only if Π is a MRF with respect to

N ; in which case {VC} is a N -potential given by

VC(x) =
∑

C′⊆C

(−1)|C|−|C′| log Π(xC
′

), ∀C,C ′ ∈ C,x ∈ Ω, (3.31)

3.4.1 Proof 1: by G. Grimmett

This proof is by Grimmett [92] but was rewritten by Geman [78]. Grimmett [92]

based the proof on the Möbius inversion theorem [177], which we gave in Theo-
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rem 3.1.

Proof - part 1. Suppose Π is a MRF w.r.t. N and V is defined as in Eq. (3.31),

then V is an N -potential if VA(x) = 0 if A 6∈ C.
Choose A 6∈ C. Then ∃s, r ∈ A such that r 6∈ Ns + s. Then:

VA(x) =
∑

B⊆A

(−1)|A|−|B| log Πs(x
B
s |xB(s))

=
∑

B⊆A−s−r

(−1)|A−B| log Πs(x
B
s |xB(s)) +

∑

B⊆A−s−r

(−1)|A−(B+s)| log Πs(x
B+s
s |xB+s

(s) ) +

∑

B⊆A−s−r

(−1)|A−(B+r)| log Πs(x
B+r
s |xB+r

(s) ) +

∑

B⊆A−s−r

(−1)|A−(B+s+r)| log Πs(x
B+s+r
s |xB+s+r

(s) )

=
∑

B⊆A−s−r

(−1)|A−B| log

[

Πs(x
B
s |xB(s))Πs(x

B+s+r
s |xB+s+r

(s) )

Πs(xB+s
s |xB+s

(s) )Πs(xB+r
s |xB+r

(s) )

]

(3.32)

But r 6∈ Ns+s implies that Πs(x
B
s |xB(s)) = Πs(x

B+r
s |xB+r

(s) ) and that Πs(x
B+s
s |xB+s

(s) ) =

Πs(x
B+s+r
s |xB+s+r

(s) ), and consequently that VA(x) = 0.

Proof - part 2. Now suppose that Π has a Gibbs representation w.r.t. N for

some potential function V , whereby VA(x) = 0 for A 6∈ C and

Π(x) =
1

Z
exp

{

∑

C∈C

VC(x)

}

∀x ∈ Ω. (3.33)

Then

Πs(xs|x(s)) =
exp{∑C∈C VC(x)}

∑

λs∈Λ exp{∑C∈C VC(λs,x(s))}

=
exp{∑s∈C∈C VC(x) +

∑

s6∈C∈C VC(x)}
∑

λs∈Λ exp{∑s∈C∈C VC(λs,x(s)) +
∑

s6∈C∈C VC(λs,x(s))}

=
exp{∑s∈C∈C VC(x)}

∑

λs∈Λ exp{∑s∈C∈C VC(λs,x(s))}

=
1

Zs
exp

{

∑

C∈Cs

VC(x)

}

(3.34)
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since VC(λs,x(s)) = VC(x) if s 6∈ C. Now Πs(xs|x(s)) only depends on VC for C ∈ Cs,
i.e., C ⊂ Ns + s, and therefore it follows that,

Πs(xs|x(s)) = P (xs|xr, r ∈ Ns). (3.35)

�

3.4.2 Proof 2: by J. Besag

This proof is by Besag [17]. From the positivity condition Eq. (3.7), Π(x) > 0 ∀x ∈
Ω, we may define

Q(x) ≡ log{Π(x)/Π(0)}, ∀x ∈ Ω. (3.36)

Given any x ∈ Ω, denote

xi = {x1, . . . , xi−1, 0, xi+1, . . . , xN} (3.37)

The problem to which Hammersley and Clifford [96] addressed themselves may now

be stated as follows: given the neighbours of each site, what is the general form of

Q(x) which may give a valid probability structure to the system? Since

exp{Q(x)−Q(xi)} = Π(x)/Π(xi)

=
Πi(xi|x1, . . . , xi−1, xi+1, . . . , xN)

Πi(0|x1, . . . , xi−1, xi+1, . . . , xN )
(3.38)

Besag’s alternative proof to the Hammersley-Clifford theorem rests upon the obser-

vation that any probability distribution Π, subject to the above conditions, there

exists an expansion of Q(x), unique on Ω and of the form

Q(x) =
∑

1≤i≤N

xiGi(xi) +
∑∑

1≤i<j≤N

xixjGi,j(xi, xj) +

∑∑

1≤i<j<k≤N

∑

xixjxkGi,j,k(xi, xj, xk) + · · ·+

x1x2 . . . xNG1,2,...,N(x1, x2, . . . , xN). (3.39)

Hammersley and Clifford’s result may be stated in the following manner:

Proposition 3.3 For any 1 ≤ i < j < · · · < r ≤ N , the function Gi,j,...,r in
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Eq. (3.39) may be non-null if and only if the sites i, j, . . . , r form a clique. Subject

to this restriction, the G-functions may be chosen arbitrarily.

Proof. It follows from Eq. (3.38) that, for any x ∈ Ω, Q(x) − Q(xi) can only

depend upon xi itself and the values at sites which are neighbours of site si. With-

out loss of generality, we shall only consider site s1 in detail. We then have from

Eq. (3.39),

Q(x)−Q(x1) = x1

{

G1(x1) +
∑

2≤j≤N

xjG1,j(x1, xj)+

∑∑

2≤j<k≤N

xjxkG1,j,k(x1, xj, xk) · · ·+

x2x3 . . . xNG1,2,...,N(x1, x2, . . . , xN )

}

. (3.40)

Now suppose site sl (l 6= 1) is not a neighbour of site s1. Then Q(x)−Q(x1) must

be independent of xl for all x ∈ Ω. Putting xi = 0 for i 6= 1 or l, we immediately

see that G1,l(x1, xl) = 0 on Ω. Similarly, by suitable choices of x, it is easily seen

successively that all 3-, 4-, . . . , n-variable G-functions involving both x1 and xl must

be null. The analogous result holds for any pair of sites which are not neighbours of

each other and hence, in general, Gi,j,...,r can only be non-null if the sites i, j, . . . , r

form a clique.

On the other hand, any set of G-functions gives rise to a valid probability distri-

bution Π which satisfies the positivity condition. Also since Q(x)−Q(xi) depends

only upon xl if there is a non-null G-function involving both xi and xl, it follows

that the same is true of Πi(xi|x1, . . . , xi−1, xi+1, . . . , xN).

�

3.5 Factorisation of the probability distribution

The following construction is by Moussouris [148]. Given Eq. (3.19),

VC(x) =
∑

C′⊆C

(−1)|C|−|C′| log Π(xC
′

), ∀x ∈ Ω, s ∈ S (3.41)
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and its Möbius inversion Eq. (3.27),

Π(x) = exp

{

∑

C⊆S

VC(x)

}

(3.42)

then

Π(x) = exp

{

∑

C⊆S

∑

C′⊆C

(−1)|C|−|C′| log Π(xC
′

)

}

. (3.43)

From this equation Moussouris [148] produced the following reconstruction of the

clique decomposition formulae,

Π(x) =
∏

C⊆S

Π(xC)nSC , where nSC = (−1)|C|
∑

C⊆C′⊆S

(−1)|C
′| (3.44)

A similar equation can be obtained for the LCPDF from Eq. (3.20) and given

Eq. (3.30),

Πs(xs|x(s)) =
1

Zs
exp

{

∑

C∈Cs

VC(x)

}

. (3.45)

The normalising term Zs can be calculated by equating xs = 0 whereby,

Πs(0|x(s)) =
1

Zs
(3.46)

Now by substituting Eq. (3.20) into Eq. (3.45) we obtain,

Πs(xs|x(s)) = Πs(0|x(s)) exp

{

∑

C∈Cs

∑

C′⊆C

(−1)|C|−|C′| log Πs(x
C′

s |xC
′

(s))

}

Πs(xs|x(s))

Πs(0|x(s))
= exp

{

∑

C∈Cs

[

∑

s∈C′⊆C

(−1)|C|−|C′| log Πs(x
C′

s |xC
′

(s)) +

∑

s6∈C′⊆C

(−1)|C|−|C′| log Πs(x
C′

s |xC
′

(s))

]}

= exp

{

∑

C∈Cs

∑

s∈C′⊆C

(−1)|C|−|C′|
[

log Πs(xs|xC
′

(s))− log Πs(0|xC
′

(s))
]

}

= exp

{

∑

C∈Cs

∑

s∈C′⊆C

(−1)|C|−|C′| log

(

Πs(xs|xC′

(s))

Πs(0|xC′

(s))

)}

(3.47)

Although the Eq. (3.47) is defined over the sites Ns + s, if we just regard the sites
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of the neighbourhood Ns we find that Eq. (3.47) is consistent with the Möbius

decompostion of Eq. (3.17). Therefore we may apply the same reconstruction of

Eq. (3.47) as Moussouris’ [148] did to Eq. (3.43). This gives an equivalent clique

decomposition of Eq. (3.47) as,

Πs(xs|x(s))

Πs(0|x(s))
=
∏

C∈Cs

(

Πs(xs|xC(s))
Πs(0|xC(s))

)nCsC

where nCsC = (−1)|C|
∑

C⊆C′∈Cs

(−1)|C
′|

(3.48)
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Chapter 4

Parametric MRF Model

This chapter reviews the development of the parametric MRF model. It includes

various standard models and a section on how the parameters for these models are

estimated. It also looks at how these models are applied to synthesising, segmenting

and classifying textures.

4.1 Introduction

To model an image as an MRF we first need to assume that the image can be

represented as an MRF. Such an image would consist of a homogeneous texture,

like the Reptile Skin from the Brodatz Album [28] as shown in Fig. 4.1.

Four basic issues need to be addressed in order to create an accurate MRF model

of a textured image.

1. Model definition, the process of establishing the mathematical form of the

model and the number of parameters. Some typical parametric MRF models

are presented in Section 4.2. As part of defining the model, the following

questions need to be considered.

• What neighbourhood should be used?

• Which clique functions should be used?

• What form should these clique functions take?

2. Parameter estimation, the process by which the parameters of a given defined

model are evaluated in order to fit that model to the textured image. This is

53
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Figure 4.1: An example of texture which is to be modelled by an MRF. This texture
is Reptile skin from the Brodatz Album [28]

addressed in Section 4.3.

3. Sampling (realising, synthesising), the process for creating a realisation of the

model, i.e., a textured image. This is addressed in Section 4.4.

4. Goodness-of-fit testing. Given an MRF model with parameters θ and a sin-

gle texture image x, the goodness-of-fit problem is to test the following null

hypothesis.

H0 : The given image x is an observation from the MRF with parameters θ.

(4.1)

This is addressed in Section 4.5.

4.2 Auto-models

Auto-models are the simplest of the MRF models. They are defined as having an

energy function that is dependent only upon the cliques containing no more than

two sites.

U(x) = −
∑

C∈Cs

VC(x) = −
∑

1≤s≤N

xsGs(xs)−
∑∑

1≤s<r≤N

xsxrGs,r(xs, xr). (4.2)
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These types of models are commonly found in technical papers dealing with MRFs [17,

40, 48, 50, 105, 120, 181, 194]. Auto-models are the easiest to construct and to find

parameters for [17, 181, 189], however the textures that have been represented by

these models have so far been very limited in structure. The textures have tended to

look like either random noise, blobs of different colours, vertical horizontal or diag-

onal lines, or a checker-board [181]. A picture from the Brodatz Album [28] such as

the one shown in Fig. 4.1, has so far eluded duplication via an auto-model [95, 105].

As mentioned in Section 3.2 Geman and Geman [82] specified their neighbour-

hood system in the following form,

N o
s =

{

r ∈ S : 0 < |s− r|2 ≤ o
}

, (4.3)

For a neighbourhood of order o, Fig. 4.2 (a) shows the neighbourhood of s as all

those pixels whose indicated value is less than or equal to o.
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Figure 4.2: Neighbourhood order and parameters. a) Hierarchically arranged neigh-
bourhood system. b) The parameter placement for the Auto-model.

Figure 4.2 (b) shows the numbering of the parameters for an auto-model given

a neighbourhood order. The pairwise cliques are represented by the parameters βi,

and the single clique is represented by the single parameter α. If βi is not included

in the neighbourhood then βi = 0. If the field is stationary, i.e., when Πs(xs|x(s)) is

independent of s, then β−i = βi.
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4.2.1 Ising model

Let N be the nearest neighbour system N 1. The classical Ising model is defined

with respect to the common state space Λ ≡ {−1,+1}, corresponding to spin up,

spin down, and

U(x) = −α
T

∑

s∈S

xs −
β

T

∑

〈s,r〉∈S

xsxr, (4.4)

where 〈s, r〉 denotes a nearest neighbour pair, T stands for temperature, α is the

external magnetic field strength and β is the coupling strength. The model is “at-

tractive” if β > 0 and “repulsive” if β < 0, see Kindermann and Snell [121].

4.2.2 Auto-binary

U(x) = −
∑

s

αsxs −
∑∑

s<r

βsrxsxr xs ∈ {0, 1} (4.5)

where βrs = βsr. The LCPDF is then defined as,

Πs(xs|x(s)) =
exp

{

xs(αs +
∑

r∈S βsrxr)
}

1 + exp
{

αs +
∑

r∈S βsrxr
} (4.6)

4.2.3 Auto-logistic

The auto-logistic model is a special case of the auto-binary model with αs ≡ α, βsr ≡
βv for vertical bonds, and βsr ≡ βh for horizontal bonds. Note that an auto-logistic

model is obtained if we assume the auto-binary model to be stationary, i.e., inde-

pendent of s.

4.2.4 Auto-binomial

Given the common state space Λ
.
= {0, 1, 2, . . . , L} then,

U(x) = −
∑

s

[

log

(

L!

xs!(L− xs)!

)

+ αsxs

]

−
∑∑

s<r

βsrxsxr (4.7)
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Therefore the LCPDF is defined as,

Πs(xs|x(s)) =
exp

{

log
(

L!
xs!(L−xs)!

)

+ αsxs +
∑

r∈S βsrxsxr

}

∑

λs∈Λ exp
{

log
(

L!
λs!(L−λs)!

)

+ αsλs +
∑

r∈S βsrλsxr

}

=

(

L!

xs!(L− xs)!

)

exp
{

xs(αs +
∑

r∈S βsrxr)
}

∑

λs∈Λ

(

L!
λs!(L−λs)!

)

exp
{

λs(αs +
∑

r∈S βsrxr)
}

=

(

L!

xs!(L− xs)!

)

exp
{

xs(αs +
∑

r∈S βsrxr)
}

(1 + exp
{

αs +
∑

r∈S βsrxr
}

)L

=

(

L!

xs!(L− xs)!

)

τxs(1− τ)L−xs (4.8)

where

τ =
exp

{

αs +
∑

r∈S βsrxr
}

1 + exp
{

αs +
∑

r∈S βsrxr
} (4.9)

In other words the LCPDF Πs(xs|x(s)) is binomial. This model was applied to

texture by Cross and Jain [50].

4.2.5 Derin-Elliott

The Derin-Elliott [54] model has the following form,

U(x) = −
∑

s

αxs −
∑∑

s<r

βsrI(xs, xr) (4.10)

where

I(xs, xr) =

{

1 xs = xr

−1 xs 6= xr
(4.11)

4.2.6 Auto-normal

A Gaussian Markov Random Field (GMRF) is a continuous random field, where

the pixel values have jointly Gaussian distributions with means µ, standard devia-

tions σ, and correlations β. The auto-normal model, described by Besag [17], is a

pairwise interaction model of the GMRF. Here Πs(xs|x(s)) is now interpreted as a

density function rather than a probability mass function. Define the image x on a
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rectangular lattice Zm = {(i, j) : 1 ≤ i, j ≤ m} such that S = Zm, N = m2, then

Πs(xs|x(s)) =
1√

2πσ2
exp







− 1

2σ2

[

xs − µs −
∑

r∈S

βsr(xr − µr)
]2






(4.12)

which leads to the joint density function

Π(x) =
|B| 12

(2πσ2)
N
2

exp

{

− 1

2σ2
(x− µ)TB(x− µ)

}

(4.13)

where µ is an N × 1 vector of arbitrary finite means, µs, and B is the N ×N matrix

whose diagonal elements are unity and whose off-diagonal (s, r) element is −βs,r. B

is symmetric, i.e., βr,s = βs,r, but it is also required to be positive definite.

The following exposition is from Dubes and Jain [59]. Now σ2B−1 is the N ×
N covariance matrix, where B−1 is the correlation matrix and is block circulant.

As shown in Fig. 4.2, a stationary second-order GMRF has only four parameters

{β1, β2, β3, β4} in addition to µ and σ. The inverse of the correlation matrix for a

stationary second-order GMRF is given below.

B =

















B1,1 B1,2 . . B1,m

B1,m B1,1 . . B1,m−1

. . . . .

. . . . .

B1,2 B1,3 . . B1,1

















(4.14)

where each Bi,j is a circulant m×m matrix defined as follows.

B1,1 = circulant (1,−β1, 0, 0, . . . , 0,−β1),

B1,2 = circulant (−β2,−β3, 0, 0, . . . , 0,−β4),

B1,m = circulant (−β2,−β4, 0, 0, . . . , 0,−β3),

B1,j = 0 for 2 < j < m. (4.15)

The parameters of a GMRF can be estimated in any of the following ways,

• Maximum Likelihood Estimator (MLE) [181].

• Maximum Pseudo-Likelihood Estimator (MPLE), Besag [19, 20],

• Coding Scheme, Besag [17],
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• Minimising Sum of Square Errors, Chellappa [39],

These methods will be discussed later in Section 4.3. A major difficulty with using

GMRF models is the selection of parameters β for which the correlation matrix B−1

is positive definite.

The following sampling algorithm was proposed by Chellappa [39]. Define the

(i, j) entry of matrix A w.r.t. B as,

A(i, j) = B(1, j + (i− 1)m) (4.16)

where A is an m×m matrix, i.e., for the above example

A =



























1 −β1 0 . . 0 −β1

−β2 −β3 0 . . 0 −β4

0 0 0 . . 0 0

. . . . . . .

. . . . . . .

0 0 0 . . 0 0

−β2 −β4 0 . . 0 −β3



























(4.17)

Algorithm for Sampling a GMRF

Step 1 Generate an m×m array η with i.i.d.element from N(0, σ2).

Step 2 Apply a 2-D FFT on η and save the result in η.

Step 3 Apply a 2-D inverse FFT to A and save the result in A.

Step 4 Fix colour of pixel (i, j) as:

xi,j =
ηi,j

√

A(i, j)
. (4.18)

Step 5 Apply a 2-D inverse FFT to x and save the result in x.

Step 6 x + µ is a sample of the GMRF.
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4.3 Parameter estimation

We assume that the conditional distributions Πs(xs|x(s)) are of a given functional

form but collectively contain a number of unknown parameters θ = (α, βT)T whose

values are to be estimated on the basis of a single realisation of, x, of the system.

To emphasise this we shall write

Πs(xs|x(s); θ) =
exp

{
∑

C∈Cs
VC(x; θ)

}

∑

λs∈Λ exp
{
∑

C∈Cs
VC(λs,x(s); θ)

} (4.19)

We require the optimisation of

Π(x; θ) =
1

Z
exp

{

∑

C∈C

VC(x; θ)

}

(4.20)

Z =
∑

y∈Ω

exp

{

∑

C∈C

VC(y; θ)

}

(4.21)

such that the value of Π(x; θ) is maximised for the single realisation x. This is what

Maximum Likelihood Estimation tries to achieve, however it is hindered by the

partition function Z which is usually computationally intractable. This also makes

it difficult to avoid phase transitions, which occur when there are near optimal

realisations y for which Π(y; θ) is a local maximum.

An alternative parameter estimation technique is Besag’s Maximum Pseudo Like-

lihood Estimation which optimises the conditional distributions Πs(xs|x(s); θ). How-

ever, because this estimate only optimises the local properties, it can not guarantee

that any long-range dependence present within the image x will be accounted for.

4.3.1 Maximum likelihood estimator

This explanation of the Maximum Likelihood Estimator (MLE) comes from Sey-

mour [181]. Although this explanation assumes that the energy function has only

single and pairwise potentials, i.e., an auto-model, it will be seen that this will also

work for higher order models. First the energy function shall be defined as,

U(x; θ) = −
∑

s

V (xs)−
∑∑

s<r

V (xs, xr)
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= −
∑

s

αϑ1(xs)−
∑∑

s<r

βsrϑ2(xs, xr) (4.22)

where ϑ1 : Λ → < is a known function, and ϑ2 : Λ × Λ → < is some known

symmetric function. The unknown parameters are α and βsr. The βsr functions are

also symmetric, i.e., βrs = βsr. For a stationary field, βsr functions are independent

of s, so we can re-index them as βs−r, therefore

βj = β−j where 0 < ‖j‖ ≤ o

βj = 0 otherwise
(4.23)

where o is the order of the neighbourhood Ns. The likelihood function is defined as

L(x; θ)
.
= Π(x; θ) =

exp[−U(x; θ)]

Z(θ)
, (4.24)

where partition function is again defined as

Z(θ) =
∑

y∈Ω

exp[−U(y; θ)]. (4.25)

Any value that maximises L(x; ·) is called the maximum likelihood estimate (MLE)

of the parameter θ. This value is found by first taking the derivative of L(x; θ) w.r.t.

θ and then equating the result to zero and solving for θ. The same result can be

obtained for the log of the likelihood.

l(x; θ) = logL(x; θ) = log Π(x; θ) = −U(x; θ)− logZ(θ) (4.26)

It is common to use the log-likelihood function, because the derivative of Eq. (4.26)

is easier to calculate. The likelihood function in Eq. (4.24) may be written as an

exponential family, so that the log-likelihood may be written as

l(x; θ) = θTY (x)− b(θ) (4.27)

Recall that θ is a column vector (α, βT)T. By equating Eqs. (4.26) and (4.27), we

get

θTY (x)− b(θ) = −U(x; θ)− logZ(θ) (4.28)

Define

θTY (x) = −U(x; θ), (4.29)
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b(θ) = logZ(θ) (4.30)

First we will need to find the components of Y (x). From Eqs. (4.22) and (4.29) we

obtain the following equation.

θTY (x) =
∑

s

αϑ1(xs) +
∑∑

s<r

βs−rϑ2(xs, xr)

= α
∑

s

ϑ1(xs) +
∑

j>0

βj
∑

s

ϑ2(xs, xs+j) (4.31)

where j is an index as shown in Fig. 4.2. Remember, because the field is stationary,

βj = β−j, so by only summing over the neighbours for which j > 0, each clique only

occurs once in the summation.

The function b(θ) may now be derived. From Eq. (4.30) we have

b(θ) = logZ(θ)

= log
∑

y∈Ω

exp[−U(y; θ)]

= log
∑

y∈Ω

exp[θTY (y)] (4.32)

In order to calculate the derivative of the log-likelihood l(x; θ) we will need to know

the gradient of b(θ).

∇b(θ) =
1

∑

z∈Ω exp[θTY (z)]

∑

y∈Ω

Y (y) exp[θTY (y)]

=
∑

y∈Ω

Y (y)
exp[θTY (y)]

∑

z∈Ω exp[θTY (z)]

= Eθ(Y (y)) (4.33)

where Eθ(Y (y)) is the expected value of Y (y) given θ. The derivative of the likeli-

hood function l(x; θ), as expressed by Eq. (4.27), is

∂

∂θ
l(x; θ) = Y (x)− Eθ(Y (y)) (4.34)

By equating ∂
∂θ
l(x; θ) to zero, the likelihood equation may be written as

Y (x) = Eθ(Y (y)) (4.35)
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which needs to be solved for θ. This can be done using a numerical minimising

routine like the Newton-Raphson method.

Seymour [181] showed the existence, uniqueness, and consistency of the MLE,

but in spite of this, the MLE is virtually useless for practical purposes because the

partition function Z(θ) is computationally intractable. However it does provide a

building block for less accurate, but easier to compute likelihood estimators.

4.3.2 Monte Carlo maximum likelihood estimator

Again this explanation comes from Seymour [181]. It was originally developed by

Geyer and Thompson [84].

Let Πψ be the Gibbs distribution with known parameter ψ. Simulate an ergodic

Markov chain {X(0),X(1), . . . ,X(n− 1)} of random fields on Ω whose equilibrium

distribution is Πψ, see Section 4.4. Write the likelihood in the form

L(x; θ) =
exp[θTY (x)]

c(θ)
(4.36)

where

c(θ) = Z(θ) =
∑

y∈Ω

exp[θTY (y)] (4.37)

Manipulate c(θ) into an expectation:

c(θ) =
∑

y∈Ω

exp[(θ − ψ)TY (y)] exp[ψTY (y)]

= c(ψ)
∑

y∈Ω

exp[(θ − ψ)TY (y)]
exp[ψTY (y)]

c(ψ)

= c(ψ)
∑

y∈Ω

exp[(θ − ψ)TY (y)]Πψ(y)

= c(ψ)Eψ
[

exp[(θ − ψ)TY (y)]
]

(4.38)

We may then define the ratio

r(θ) =
c(θ)

c(ψ)
= Eψ

[

exp[(θ − ψ)TY (y)]
]

(4.39)

so that the log-likelihood, to within a multiplicative constant, may now be written
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as

l(x; θ) = log[c(ψ)L(x; θ)] = θTY (x)− log r(θ). (4.40)

Using the simulated Markov chain, define rn(θ) as

rn(θ) =
1

n

n−1
∑

i=0

exp[(θ − ψ)TY (X(i))] (4.41)

Due to the ergodicity of the Markov chain, we have rn(θ)→ r(θ) as n→∞. Thus

the Monte Carlo approximation to the log-likelihood Eq. (4.40) is given by

ln(x; θ) = θTY (x)− log rn(θ) (4.42)

We call the value which maximises ln(x; ·) a Monte Carlo MLE (MCMLE). There

are two important issues to consider when using the MCMLE as an estimate of the

true parameter. One is that n, the number of Markov chain samples, should be

much larger than N the size of the image, to provide a good estimate of θ. Second,

Seymour [181] found that the arbitrary parameter ψ had to be chosen close to the

true parameter θ so that the number of Markov chain Monte Carlo samples required

was not prohibitive. In fact if ψ differed from θ by more than 10%, the estimation

of θ could not improve upon ψ itself. This was for a chain length of 500.

4.3.3 Maximum pseudo-likelihood estimator

An alternative to the MLE was developed by Besag [19, 20] called Maximum Pseudo-

Likelihood Estimator (MPLE). Its predecessor was the Coding Scheme, Section 4.3.4,

also developed by Besag [17]. This explanation of the MPLE again comes from Sey-

mour [181]. The pseudo-likelihood which Besag proposed is simply the product of

the local probabilities of the sites in S.

PL(x; θ) =
∏

s∈S

Πs(xs|x(s); θ)

=
∏

s∈S

exp[−Us(x; θ)]

Zs(θ)
(4.43)

where

Zs(θ) =
∑

λs∈Λ

exp[−Us(λs,x(s); θ)] (4.44)
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To find the maximum pseudo-likelihood estimate, we follow the same steps as for

the MLE. Therefore we need to solve for θ for when the derivative of the pseudo-

likelihood function is equal to zero. Again it is easier if we use the log-pseudo-

likelihood function, which will give the same result.

l(x; θ) = logPL(x; θ)

= −
∑

s∈S

Us(x; θ)−
∑

s∈S

logZs(θ) (4.45)

If we assume that Us(x; θ) is only second order, as for an Auto-model, then Us(x; θ)

can be expressed in the following form

Us(x; θ) = −αϑ1(xs)−
∑

r∈Ns

βs−rϑ2(xs, xs+r), (4.46)

where the variables are the same as in Eq. (4.22). We may then write the first part

of Eq. (4.45) as

θTY (x) = −
∑

s∈S

Us(x; θ)

=
∑

s∈S

αϑ1(xs) +
∑

s∈S

∑

r∈Ns

βs−rϑ2(xs, xs+r)

= α
∑

s∈S

ϑ1(xs) +
∑

r∈N0

βr
∑

s∈S

ϑ2(xs, xs+r) (4.47)

Therefore the derivative of the first part of Eq. (4.45) is just Y (x). However notice

that this Y (x) is different to the Y (x) of Eq. (4.31) calculated for the MLE. We can

now express the second part of Eq. (4.45) as,

g(θ) =
∑

s∈S

logZs(θ)

=
∑

s∈S

log
∑

λs∈Λ

exp[−Us(λs,x(s); θ)]

=
∑

s∈S

log
∑

λs∈Λ

exp[θTYs(λs,x(s))] (4.48)

(4.49)
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where Ys is the known components of the potentials associated with site s. Note

that

Y (x) =
∑

s∈S

Ys(x) (4.50)

We now need to calculate the derivative of g(θ).

∇g(θ) =
∑

s∈S

1
∑

τs∈Λ exp[θTYs(τs,x(s))]

∑

λs∈Λ

Ys(λs,x(s)) exp[θTYs(λs,x(s))]

=
∑

s∈S

∑

λs∈Λ

Ys(λs,x(s))
exp[θTYs(λs,x(s))]

∑

τs∈Λ exp[θTYs(τs,x(s))]

=
∑

s∈S

Eθ(Ys(λs,x(s))) (4.51)

Analogous to the likelihood Eq. (4.35), the corresponding pseudo-likelihood equation

is

Y (x) =
∑

s∈S

Eθ(Ys(λs,x(s))) (4.52)

which needs to be solved for θ, again through some kind of numerical minimising

routine like the Newton-Raphson method.

The advantage of the MPLE is that the partition functions for the single sites are

easily computed. Geman and Graffigne [81] also established the existence, unique-

ness, and consistency of the MPLE under very general conditions. However, because

the MPLE only optimises the local properties, it may not deal well with images that

have long range dependence. This limitation was demonstrated by experiments con-

ducted by Seymour [181]. However, out of all the estimators, the general consensus

seems to point to the MPLE as the estimator most likely to give reasonable and

consistent results [181].

4.3.4 Coding scheme and other estimators

The coding scheme of Besag [17], is based on the observation that given two sites s

and r that are conditionally independent of each other, then by the Bayes formula

and the Markov property,

P (xs, xr|t ∈ Ns, t ∈ Nr) = P (xs|t ∈ Ns)P (xr|t ∈ Nr) (4.53)
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Let Sj ⊆ S such that every site in Sj is conditionally independent of every other

site in Sj. Consider a first-order neighbourhood, Fig. 4.3 shows a labelling of sites

for Sj, where ‘×’∈ Sj and ‘.’6∈ Sj.

. × . × . × . × . ×
× . × . × . × . × .
. × . × . × . × . ×
× . × . × . × . × .

Figure 4.3: Coding Pattern for a first-order neighbourhood

The coding method defines the parameter estimate θ̂ as follows. First find the

parameters θ̂j which maximise the log-likelihood Lj(x; θ) for the sites Sj.

Lj(x; θ) =
∑

s∈Sj

log[Πs(xs|x(s); θ)] =
∑

s∈Sj

log

[

exp
{
∑

C∈Cs
VC(x; θ)

}

∑

λs∈Λ exp
{
∑

C∈Cs
VC(λs,x(s); θ)

}

]

(4.54)

Again Eq. (4.52) can be applied and the log-likelihood Lj(x; θ) can be optimised

via the Newton-Raphson method. An estimated parameter θ̂j is obtained for each

separate set Sj ⊆ S, whereby the overall parameter estimate θ̂ is given by the

average of the estimates θ̂j.

Cross and Jain [50] used this method for binary images and found that it pro-

duced consistent results. However Derin and Elliott [54] used the same method on

grey level images and found it produced unreliable results. Besag [18] considered

the coding method to be inefficient and therefore proposed the pseudo-likelihood

estimator.

Other attempts at finding better estimators have been made. Derin and El-

liott [54] proposed the Least-Squares Error Estimator, but their method was depen-

dent on subjective criteria, and it did not extend well for images with many grey

levels. Chen [43] tried to upgrade the Least-squares Error Estimator by proposing

the Logit Model Fit Estimator, but this also suffered from inefficiencies when mod-

elling images with many grey levels. However Chen and Dubes [42] found that the

best estimator for binary images was the Minimum Logit χ2 Estimator [16].

A specific estimator for the GMRF model was proposed by Chellappa [39] called

Sum of Square Errors Minimisation. However it was later shown by Bader, JáJá and

Chellappa [6] that the maximum likelihood estimator performed better than sum
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of square errors minimisation. Another specific estimator is Method-of-Moments by

Possolo [165], which is valid for stationary fields where dependence weakens rapidly

with increasing distance.

4.4 Sampling

A texture is synthesised from an MRF model by sampling x ∈ Ω with respect to

the joint distribution Π. If the model has captured the complete characteristics of

the training texture then most of the “mass” associated with the joint distribution

will centre around those images x ∈ Ω which display the same texture as the one

modelled. If this is the case, then a sampling of the joint distribution Π will most

likely produce a texture similar to the modelled texture. However, the joint distri-

bution Π has only been created from one sample (Y = y). The amount by which

the “mass” of the joint distribution Π clusters around similar textures x ∈ Ω will

depend on how the training texture y ∈ Ω was modelled.

For many reasons the joint distribution Π cannot be directly sampled. One rea-

son is that the sample space Ω is usually prohibitively large to perform a direct

sampling. Therefore synthesis algorithms employ the fact that the joint distribu-

tion Π is uniquely determined by the LCPDFs [17]. These algorithms operate by

generating a Markov chain of images {X(0),X(1), . . . ,X(n)} which converge to an

image x ∈ Ω such that,

lim
n→∞

P (X(n) = x|X(0) = x(0)) = Π(x) ∀x ∈ Ω, (4.55)

irrespective of the initialised image X(0) = x(0) at the beginning of the Markov

chain [82]. The initialising image will normally be drawn from a computer random

number generator and will have a distribution given by that process. Typically each

image x(0) will be uncorrelated and come from a uniform distribution.

Stochastic relaxation (SR) is one method of generating a Markov chain [50, 80,

82]. Two well known SR algorithms are the Metropolis algorithm [43, 142], as given

in Fig. 4.4, and the Gibbs Sampler [78, 82], as given in Fig. 4.5. These algorithms

operate by replicating all but one of the pixel values from an image in the Markov

chain to the next. The pixel value that is not replicated is updated with a pixel

value defined by the LCPDF. Convergence to Π(x) occurs if, as the length of the

Markov chain increases to infinity, the number of times that a single pixel is updated
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also tends to infinity [80, 82].

Metropolis Algorithm

1. Fix a random site-visitation schedule {ak ∈ S, k =
1, 2, . . .}, such that for each s ∈ S, ak = s infinitely of-
ten.

2. Randomly choose x(0).

3. For k = 1 to ∞ do

3.1. Randomly choose λak
∈ Λ.

3.2. Let

p = min

{

1,
P (λak

|xr(k − 1), r ∈ Nak
)

P (xak
(k − 1)|xr(k − 1), r ∈ Nak

)

}

3.3. Randomly choose q ∈ [0− 1)

3.4. The image X(k) is obtained from the previous image
X(k − 1) such that,

Xs(k) =

{

λak
, if s = ak and p > q

xs(k − 1), otherwise

4. Done

Figure 4.4: Metropolis algorithm

SR algorithms iteratively generate a succession of images which converge to

an image with a probability given by the joint distribution Π of an MRF [82].

However the desired sample image is only theoretically reached in the limit as the

number of iterations of the SR algorithm tends to infinity, Eq. (4.55). In practice

SR algorithms have to terminate. The number of iterations required to obtain

equilibrium largely depends on the LCPDF and therefore the training texture (Y =

y). Relaxation algorithms whose termination point does not have to be pre-specified

are the deterministic relaxation (DR) algorithms. A prime example is Besag’s [19]

Iterative Conditional Modes (ICM) algorithm, as given in Fig. 4.6. In this case, the

pixel whose value is to be updated is equated to the mode of its LCPDF.

The essence of every SR algorithm is that the Markov chain has the opportunity

to progress to lower probability states such that Π(x(i)) < Π(x(i−1)), however such

a progression is not allowed in DR. Therefore a DR algorithm will tend to find an
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Gibbs Sampler

1. Fix a random site-visitation schedule {ak ∈ S, k =
1, 2, . . .}, such that for each s ∈ S, ak = s infinitely of-
ten.

2. Randomly choose x(0).

3. For k = 1 to ∞ do

3.1. Sample λak
∈ Λ from the distribution

P (λak
|xr(k − 1), r ∈ Nak

)

3.2. The image X(k) is obtained from the previous image
X(k − 1) such that,

Xs(k) =

{

λak
, if s = ak

xs(k − 1), otherwise

4. Done

Figure 4.5: Gibbs Sampler

equilibrium state at a local maximum, generally somewhere close to the initial image

X(0) = x(0). When the ICM algorithm reaches equilibrium at a local maximum of

Π, further iterations via the ICM algorithm will not change the synthesised image.

This is because at the local maximum all the pixel values in the image will be equal

to the modes of their respective LCPDFs,

xs = arg max
λs∈Λ

P (λs|xr, r ∈ Ns) ∀s ∈ S. (4.56)

Therefore the ICM algorithm will have effectively reached its own termination point.

If the texture is sufficiently well defined by the model, then the “mass” of the

joint distribution Π should cluster around just those images x ∈ Ω which represent

textures similar to the training texture. To test that this is the case, the joint

distribution Π should be repeatedly sampled via a synthesis algorithm that seeks a

highly likely representation. If the synthesised textures are then generally objectively

similar to the training texture, it can then be said that most of the mass of Π clusters

around those images x ∈ Ω which represent textures similar to the training texture.

The texture is then well modelled by the LCPDF. As the ICM algorithm is prone to
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Iterative Conditional Modes

1. Fix a random site-visitation schedule {ak ∈ S, k =
1, 2, . . .}, such that for each s ∈ S, ak = s infinitely of-
ten.

2. Randomly choose x(0).

3. For k = 1 to ∞ do

3.1. Let

λak
= arg max

λak
∈Λ
P (λak

|xr(k − 1), r ∈ Nak
)

3.2. The image X(k) is obtained from the previous image
X(k − 1) such that,

Xs(k) =

{

λak
, if s = ak

xs(k − 1), otherwise

4. Done

Figure 4.6: Iterative Conditional Modes

acquiring a representation at a local maxima of Π, it may not be generally suitable

for this type of test. However, later in Chapter 7 when multiscale texture synthesis

is discussed, it is determined that the ICM algorithm is acceptable if a multiscale

texture synthesis algorithm is used.

4.4.1 Optimisation by simulated annealing

Simulated annealing is not essential for texture synthesis, as an MRF texture can be

generated by simply sampling from the distribution Π. However this is a good point

at which to introduce the concept of a temperature variable. This concept will be

later refined for our own application of local annealing. Most of the following work

comes from Geman [78, 82]. Consider an MRF with Gibbs distribution,

Π(x) =
1

Z
e−U(x), x ∈ Ω (4.57)
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we wish to find the x that maximises Π(x), or in other words, those ground states

Ωmin whereby,

Ωmin = {x ∈ Ω : U(x) = min
x∈Ω

U(x)}, (4.58)

Kirkpatrick et al. [122] and Cerny [33] made the analogy between this system

and a physical system in statistical physics. To find the ground states in such a

system a process of annealing is used, in which the interacting substance of the

system is initially heated and then slowly cooled, allowing equilibrium to be reached

at each successively lower temperature. A typical physical application is the working

of metal, also certain crystals are grown in this way. Annealing is a process designed

to obtain the perfect ground state of a system.

In order for the Gibbs distribution to mimic the annealing process we introduce

a temperature variable T and redefine the Gibbs distribution as,

ΠT (x) =
1

ZT
e−U(x)/T . (4.59)

Therefore,

lim
T→∞

ΠT (x) =
1

‖Ω‖ (4.60)

That is at high temperatures ΠT (x) tends to a uniform distribution and all states

x ∈ Ω have the same probability of occurring. As the temperature decreases and

approaches 1, then ΠT (x)→ Π(x) the original distribution. However if the temper-

ature is lowered even further we have,

lim
T→0

ΠT (x) = Π0(x)
.
=

{

0, x 6∈ Ωmin

1
‖Ωmin‖

, x ∈ Ωmin

(4.61)

Using the distribution Π0(x) is equivalent to applying Besag’s [19] ICM algorithm,

as given in Fig. 4.6.

Annealing requires a Monte Carlo simulation at each temperature. The aim

is to reach equilibrium, Eq. (4.55), in the Markov chain before descending to the

new temperature. If the rate of decent is slow enough, then obtaining x ∈ Ωmin

is guaranteed. What is required is a cooling schedule to determine how long the

Markov chain should be at each temperature, and how much the temperature should

be decreased at the end of each Markov chain.

Theorem 4.1 (Cooling Schedule) Given that S = {s1, s2, . . . , sN}, assume that
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there exists an integer τ ≥ N so that {X((k− 1)τ + 1),X((k− 1)τ + 2), . . . ,X(kτ)}
is a Markov chain at temperature Tk. Then

lim
k→∞

P (X(kτ)) = x|X(0) = x(0)) = Π0(x) ∀x ∈ Ω, (4.62)

if Tk is any decreasing sequence of temperatures for which

1. Tk → 0 as k →∞;

2. Tk ≥ N∆
log k

∀k ≥ 2

and

∆ = max
s∈S;x∈Ω

[max
λs∈Λ

Us(λs,x(s))− min
λs∈Λ

Us(λs,x(s))] (4.63)

Proof : See Geman and Geman [82], Theorem B.

�

In practice N∆ is too large for implementation. Instead an approximation is

used

Tk =
C

log(1 + k)
, k ≥ 1 (4.64)

where C � N∆. Geman and Geman [82] used C = 3.0 or C = 4.0, and τ = N such

that every site s ∈ S is visited in the Markov chain.

4.5 Goodness-of-fit testing

A goodness-of-fit test is required to test the hypothesis that the observed training

texture is an expected realisation of the MRF model. An obvious way of testing this

hypothesis that the texture model has successfully captured the characteristics of the

texture, is to use the model to synthesise a set of realisations. Success can then be

assessed in terms of how subjectively similar the synthetic textures are to the original

training texture. However care must be taken when subjective analysis is used,

because as mentioned in “Numerical Recipes in C” [167] it is deemed courageous to

just rely on the model “looking” like it fits the data (i.e., texture). This is regarded

as chi-by-eye and can be a big trap to the unwary.

There have been some attempts at forming an objective approach to goodness-

of-fit testing for texture. Cross and Jain [50] used a chi-square test to determine
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if the observed training texture fitted the data distribution defined by the esti-

mated LCPDF. However this can easily turn into an unrealistic task as at least

five observations are usually desired for each LCPDF configuration for chi-square

testing [67, 169].

Alternatively Dubes and Jain [59] proposed that texture features could be used

to measure statistics from both the synthetic textures and the training texture.

Then a ranking test could be used to determine if the measured statistics from the

synthetic textures came from the same population as those taken from the training

texture. However for this type of goodness-of-fit test to be advantageous, the texture

features should encompass the complete characteristics of the texture. The problem

is, this is exactly what the model itself is trying to achieve.

The reason for applying a goodness-of-fit test to a proposed model is that it

not only allows for an evaluation of how well the model fits the texture, but it also

allows for the ability to choose the best model from a range of models. In general

we require that the model adequately fits the texture, but is not over parameterised.

When a model is over parameterised, it is in effect trying to extract more informa-

tion from the texture than can be expected to exist [211]. Smith and Miller [188]

proposed a model selection criterion for MRFs based on the stochastic complexity of

Rissanen [176]. A more popular criterion, which is useful for exponential families, is

the information criterion of Akaike [4] called AIC. However, the AIC tends to over-

parameterise, and does not give a consistent estimate [208]. Bayesian modification

of Akaike’s information criterion (BIC) has a larger penalty term that makes it less

prone to over-parameterisation [5, 179] and more consistent [208].

Seymour [181] took model selection a step further. She noted the connection be-

tween parameter estimation and goodness-of-fit testing. In her thesis she presented

an approach for model selection based on the parameter estimation routines of MLE,

MCMLE, and MPLE. Unfortunately, although this approach was a marked improve-

ment over the AIC and BIC for model selection, it was still limited by the parametric

models ability to correctly model the texture. As Seymour [181] mentions, there is

still no efficient systematic way of determining the cliques and respective potential

functions of a parametric MRF for modelling a particular texture.



Chapter 5

Nonparametric MRF Model

This chapter gives the construction details of our nonparametric MRF model, plus

some alternative approaches.

5.1 Introduction

An MRF is modelled by its joint probability distribution Π. In texture analysis

usually only one training image (Y = y) of a texture is given from which to esti-

mate Π. It is desirable that the majority of the “mass” of Π be distributed among

those images, x ∈ Ω, which are subjectively similar to the training image y. To

accomplish this with only one training image, two properties of an MRF are used.

The first property is given by Besag [17] and states that Π can be uniquely ex-

pressed in terms of its LCPDFs for which the neighbourhoods consist of the rest

of the image. However this still means we have only one single independent and

identically distributed (i.i.d.) data sample. The second property of an MRF is that

the neighbourhood of an LCPDF may be adequately defined over a smaller subset

of sites. For a homogeneous MRF, the LCPDF may now be modelled from a set of

i.i.d. sample data obtained from a subset of sites S ′ ⊂ S and their neighbourhoods

{Ns, s ∈ S ′} for which the LCPDFs P (λs|xr, r ∈ Ns) ∀s ∈ S ′ are not conditional

on any sites r ∈ S ′. Therefore the set of sites is S ′ = {s ∈ S : r 6∈ S ′, ∀r ∈ Ns}.
Given a large enough number of i.i.d. sample data, the LCPDF may be modelled

well enough to produce a reasonable estimate of the joint probability distribution

Π.

The coding scheme, described in Besag [17] and Section 4.3.4, identifies how a

75
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set of sites S may be reduced to separate subsets S ′ ⊂ S over which i.i.d. sample

data may be obtained. Besag [17] proposed that via this method, an estimate of

the LCPDF could be obtained from each subset S ′ ⊂ S, with the final estimate of

the LCPDF being the average of these. Cross and Jain [50] used this method for

binary images and found that it produced consistent results. However Derin and

Elliott [54] used the same method on grey level images with unreliable results.

Besag [18] considered the coding method to be inefficient and therefore proposed

the pseudo-likelihood estimator, Section 4.3.3. Instead of using separate sets of i.i.d.

data, the pseudo-likelihood estimator uses all the data from the complete set S to

obtain an estimate of the LCPDF. Even though the combined data is no longer i.i.d.,

Besag [20] showed that this is an efficient technique for estimating the LCPDF of a

GMRF. Geman and Graffigne [81] also proved that the pseudo-likelihood estimate

converged to the true LCPDF with probability one as the size of the field S tended

to infinity. With this evidence we justify our use of non i.i.d. sample data for our

nonparametric estimate of the LCPDF.

To model the joint distribution Π by its LCPDF, it is first necessary to define

the neighbourhood system. However because there is no direct way of determining

the correct neighbourhood system from the image sample, we initially assume one.

If subsequently the goodness-of-fit test shows this is in adequate, then a different

neighbourhood system is chosen.

Assuming a neighbourhood system, an estimate of the LCPDF is based on defin-

ing a distribution for the multi-dimensional histogram of a particular homogeneous

textured image, Section 5.2. Each dimension of the histogram represents a site from

the neighbourhood of the LCPDF with one dimension for the site itself. The total

number of dimensions is the statistical order of the model and is equal to the neigh-

bourhood size plus one. Although it would be informative to test larger and larger

neighbourhoods for modelling texture, there is a limit to the size which may be

successfully modelled. This is due to the curse of dimensionality [11], which occurs

when modelling with a limited amount of sample data in a high dimensional space.

Silverman [183] showed that to maintain accuracy in a model, the amount of sample

data needs to grow almost exponentially with the dimensionality of the histogram.

As we are dealing with a limited amount of sample data – approximately equal to

the number of pixels in a training texture image – the accuracy of the model will

rapidly decrease as the dimensionality of the histogram increases.

The parametric approach for estimating the LCPDF from the multi-dimensional
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histogram is to use the Gibbs distribution to define the LCPDF in terms of potential

functions, Eq. (3.30). Section 4.2 lists various parametric models, for which each

potential function is defined in terms of a parametric function and a set of parame-

ters. These parameters are optimised so as to best match the LCPDF to the multi-

dimensional histogram (Section 4.3). However the fitting of the LCPDF to the multi-

dimensional histogram occurs over the whole domain of the histogram [43, 181].

In such cases, when the domain is large and only sparsely populated with sample

data, nonparametric estimation of the LCPDF tends to be more reliable than their

parametric counterparts if the function representing the form of the underlying true

distribution is unknown [183]. This is because nonparametric estimation only tries

to model those areas of the multi-dimensional histogram that contain the data rather

than the whole domain as with parametric estimation.

If the general shape of the LCPDF is unknown, then instead of trying to model

the unknown density function in the form of a parametric function, it may be more

prudent to use a nonparametric density estimator. In this way the true shape of

the unknown density function is not compromised by trying to fit the shape of

an assumed parametric function to the data. The only catch is that in using a

nonparametric density estimator, the LCPDF may no longer define a valid joint

distribution Π as required by the equivalence theorem [17]. In any case, parametric

density estimation becomes less accurate as the sample space becomes more sparsely

populated with increased neighbourhood size.

5.2 Multi-dimensional histogram

Given a training image y of a homogeneous texture and a predefined neighbourhood

system N , a nonparametric estimate of the LCPDF may be obtained by building

a multi-dimensional histogram. First denote a pixel value L0, for which L0 ∈ Λ.

Given that L0 represents the pixel value at a site s ∈ S, denote pixel values Lnr ∈ Λ

for each site r ∈ Ns, where the indices nr are integers 1 ≤ nr ≤ |Ns| representing

the relative position of r to s. Then the set of pixel values {L0, . . . , L|Ns|} represents

a realisation of a pixel and its neighbours irrespective of the pixel location s ∈ S.

Denote F (L0, . . . , L|Ns|) as the frequency of occurrence of the set of grey levels
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{L0, . . . , L|Ns|} in the image y. The frequency is calculated from the image y as,

F (L0, . . . , L|Ns|) =
∑

s∈S,
Ns⊂S

δ(ys − L0)
∏

r∈Ns

δ(yr − Lnr), (5.1)

where δ is the Kronecker function. The set of frequencies

F (L0, . . . , L|Ns|) ∀L0, . . . , L|Ns| ∈ Λ (5.2)

is the multi-dimensional histogram, where each Ln, 0 ≤ n ≤ |Ns| is a dimension (or

axis) of the histogram.

The LCPDF is estimated from the multi-dimensional histogram as,

P̂ (λs|xr, r ∈ Ns) =
1

Zs
F (L0 = λs, Lnr = xr, r ∈ Ns), ∀λ ∈ Λ (5.3)

where,

Zs =
∑

λs∈Λ

F (L0 = λs, Lnr = xr, r ∈ Ns). (5.4)

As an example, lets choose a neighbourhood system N = {Ns = {s − 1}}
as shown in Fig. 5.1(a). The estimation of the respective LCPDF is formed by

creating a 2-dimensional histogram with respect to N and the image y. To build

the histogram, first label the dimensions as (L0, L1), where L0 represents the pixel

value of ys and L1 represents the relative neighbouring pixel value of ys−1. Initialise

F (L0, L1) = 0 ∀L0, L1 ∈ Λ. Then by raster scanning the image y increment the

value of F (L0 = ys, L1 = ys−1) for each site s ∈ S,Ns ⊂ S. A representation of the

multi-dimensional histogram is shown in Fig. 5.1(b). The estimate of the LCPDF

is then given by,

P̂ (xs|xs−1) =
F (L0 = xs, L1 = xs−1)

∑

λs∈Λ F (L0 = λs, L1 = xs−1)
. (5.5)

In building the histogram no allowances have been made for making the sample

data (L0, L1) i.i.d. This means the estimate of the LCPDF is biased. However, as

discussed in Section 5.1, we justify our use of non i.i.d. sample data from Besag’s [20]

and Geman and Graffigne’s [81] findings that the pseudo-likelihood estimator –

which also uses non i.i.d. sample data – is an efficient estimator of a GMRF and

tends to the true estimate as the size of field S tends to infinity.
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Figure 5.1: A one neighbour neighbourhood and its hypothetical 2-D histogram.

The reliability of the LCPDF estimate via the multi-dimensional histogram is

determined by how well the sample data fills the histogram space [183]. Ideally

the true probability density function is given by a histogram built from a sample

data size approaching infinity, but this is never the case, so a histogram is only an

estimate of the probability density function.

Consider the following example for a second order neighbourhood system, order

o = 2, the one that represents the eight nearest neighbours of a pixel. The histogram

required to capture the statistics must be 9-dimensional. Now if the grey levels range

from 0–15, then the size of the sample space of the histogram equals 169 ≈ 6.9×1010.

If we assume that the original image is relatively large, say 1000× 1000 pixels, then

we would have approximately a million samples to fill this sample space. However

the sample data will only fill about 1 in every 70000 histogram bins. Therefore this

histogram is a very poor estimate of the probability density function. A random

search through this histogram space would reveal little data or structure.

The estimate may be improved by reducing the number of bins (or grey lev-
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els), but as the dimensionality of the histogram increases for larger neighbourhood

systems the sample space will still tend to be sparsely populated. Decreasing the

number of grey levels also erodes the information content of the probability density

function. However there is another issue at hand.

For an MRF the joint distribution Π(x) must hold the property

Π(x) > 0 ∀x ∈ Ω, (5.6)

which implies that for the LCPDF,

P (λs|xr, r ∈ N ) > 0 ∀s ∈ S, λs ∈ Λ (5.7)

Therefore for a valid LCPDF a positive density needs to be derived from the sparsely

populated multi-dimensional histogram. This density should not only conform to

Eq. (5.7), but also discern a representative probability density function from the

sampled data. In our prior knowledge about this density function we assume that

there exists a degree of continuity in the representation, therefore we are expecting

a “smooth” distribution. The most common nonparametric density estimator is the

Parzen-window density estimator [60] which smoothes the sample data within the

multi-dimensional histogram.

5.3 Parzen window density estimator

The Parzen-window density estimator [60] has the effect of smoothing each sample

data point in the multi-dimensional histogram over a larger space, possibly in the

shape of a multi-dimensional Gaussian surface as indicated in Fig. 5.2.

Given a training image y ∈ Ω of a homogeneous texture and a predefined neigh-

bourhood system N defined on a lattice Sy, the sample data Zp = Col[yp, yq, q ∈ Np]
is taken from all sites p ∈ Sy for which Np ⊂ Sy. Denote the variable n as the

number of sample data Zp, i.e., the number of sites {p ∈ Sy,Np ⊂ Sy}. Equate

d = |Np| + 1 the number of elements in the vector Zp, i.e., d equals the di-

mensionality of the previously defined multi-dimensional histogram. Finally the

Parzen-window estimator requires a window parameter h. Thus for a column vector

z = Col[L0, Lnr , r ∈ Ns] = Col[L0, . . . , L|Ns|], the Parzen-window density estimated
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Figure 5.2: The density estimation process involves convolving each histogram data
point with multi-dimensional Gaussian.

function f̂(z) of the true density function f is given by [60] as,

f̂(z) =
1

nhd

∑

p∈Sy,
Np⊂Sy

K

{

1

h
(z− Zp)

}

, (5.8)

The shape of the smoothing is defined by the kernel function K. The kernel

function K(z) is defined for d-dimensional z, and must satisfy,

∫

<d

K(z)dz = 1. (5.9)

UsuallyK will be a radially symmetric unimodal probability density function (PDF).

We chose K as the standard multi-dimensional Gaussian density function,

K(z) =
1

(2π)d/2
exp(−1

2
zTz), (5.10)

defined with unit variance.

The size of the kernel function K is defined by the window parameter h. The

aim is to correctly choose h so as to obtain the best estimate of the frequency

distribution f̂ for the LCPDF. If h is too small, random error effects dominate, and

a “noisy” estimate of the true density function f results. Furthermore, the LCPDF

will not be general enough to represent all subjectively similar textures with the

same model. If h is too large, then all the useful information will be lost in a “blur”

and detail associated with the texture will be lost. The aim is to correctly choose h

so as to “focus” the estimate density function f̂ to be as similar as possible to the

true density function f .
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Given the kernel function defined by Eq. (5.10) and assuming that the unknown

density function f has bounded and continuous second derivatives [183], then the

optimal window parameter hopt may be determined by minimising the mean inte-

grated square error as shown in [183]. However the equation for this optimal window

parameter hopt is defined with respect to the unknown optimal density function f .

If it is assumed that this optimal density function f is a standard multi-dimensional

Gaussian density, then from [183],

hopt = σ

{

4

n(2d+ 1)

}1/(d+4)

, (5.11)

where σ2 is the the average marginal variance. In our case the marginal variance is

the same in each dimension of the multi-dimensional histogram, whereby σ2 equals

the variance associated with the one-dimensional histogram of the training image y.

The estimated LCPDF, defined with respect to the Parzen-window density esti-

mated function f̂ is then,

P̂ (xs|xr, r ∈ Ns) =
f̂(L0 = xs, Lnr = xr, r ∈ Ns)

∑

λs∈Λ f̂(L0 = λs, Lnr = xr, r ∈ Ns)

=
f̂(z = Col[xs, xr, r ∈ Ns])

∑

λs∈Λ f̂(L0 = λs, Lnr = xr, r ∈ Ns)

=

∑

p∈Sy,Np⊂Sy
exp

[

− 1
2h2

opt
(z− Zp)

T(z− Zp)
]

∑

xs∈Λ

∑

p∈Sy,Np⊂Sy
exp

[

− 1
2h2

opt
(z− Zp)T(z− Zp)

] ,

(5.12)

where z = Col[xs, xr, r ∈ Ns].
In practice it is more convenient to estimate the LCPDF, as required, directly

from the sample data rather than building a multi-dimensional histogram and con-

volving it with a multi-dimensional Gaussian. For large neighbourhood systems or

for images with a large range of grey levels, the multi-dimensional histogram tends

to be too large to store and too large to calculate every frequency estimate. Instead,

as only the LCPDF is required, it is simpler to calculate the LCPDF directly from

the sample data via Eq. (5.12), and compactly storing the sample data in the form

of the training image.
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5.3.1 Required sample size for given accuracy

Suppose that the true density f is unit multivariate normal, and that the kernel is

also multivariate normal. Suppose that it is of interest to estimate f at the mean,

and that the window parameter h has been chosen to minimise the mean square

error at this point. Table 5.1 shows the sample size required to ensure that the

relative mean square error at the mean is less than 0.1 [183].

Table 5.1: Sample size required to estimate a standard multivariate normal density
at the mean for an error of less than 0.1, from Silverman [183]

Dimensionality Required sample size

1 4
2 19
3 67
4 223
5 768
6 2 790
7 10 700
8 43 700
9 187 000

10 842 000

Furthermore, the results obtained in this case are likely to be optimistic since

the point 0 is not in the tail of the distribution, and the normal is a smooth uni-

modal density. To highlight why the sample size increases so rapidly; given a ten-

dimensional normal distribution, 99% of the mass of the distribution is at points

whose distance from the origin is greater than 1.6 standard deviation. Compared

to the one-dimensional case, where nearly 90% of the distribution lies between ±1.6

standard deviation. This shows that it is likely to be difficult to estimate the density

except from enormous samples, and that the density itself may give a superficially

false impression of the likely behaviour of sample data sets. Similar behaviour is

observed even when the tail of the density is eliminated altogether by approximating

the density as a uniform distribution over a multidimensional box [180].
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5.4 Alternative nonparametric estimators

5.4.1 Adaptive kernel estimator

One practical drawback of the kernel method for density estimation is its inability

to deal satisfactorily with the tails of distributions without over smoothing the main

part of the density. The adaptive kernel estimator overcomes the problem by letting

the window parameter h vary depending on the density of the sample data. Broader

kernels are used in regions of low density. Thus an observation in the tail would

have its mass “smudged” out over a wider range than one in the main part of the

distribution.

The first stage of the method is to identify whether or not an observation is in a

region of low density. An initial estimate is used to get a rough idea of the density;

this estimate yields a pattern of window parameters h corresponding to various

observations and these window parameters h are used to construct the adaptive

estimator itself [183], Fig. 5.3.

5.4.2 Adaptive bin estimator

The adaptive bin estimator works on the same principal as the adaptive kernel

estimator from Section 5.4.1. Both are designed to improve the estimate in the

tails of the distributions. While the adaptive kernel estimator modifies the window

parameter h – increasing h for areas where there are low bin counts – the adaptive

bin estimator modifies the histogram bins themselves. The adaptive bin estimator

is based on the idea that in order to record a statistically significant count in a

bin that is located in a low density area, the bin size has to be increased until it

captures enough sample data. The following procedure illustrates this idea for a

one-dimensional histogram.

Consider a one-dimensional histogram denoted as H = {Hλ = F (λ), λ ∈ Λ},
whereHλ is the histogram bin for λ ∈ Λ and F (λ) is the respective count (frequency).

Again Λ = {0, 1, 2, . . . , L − 1}. Given an image X = x defined on a set of sites

S = {s1, s2, . . . , sN}, the histogram is then defined as,

H =

{

Hλ =
∑

s∈S

δ(xs − λ), λ ∈ Λ

}

(5.13)
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Adaptive Kernel Estimator

1. Find a pilot estimate f̃(z), z ∈ Λd that satisfies f̃(Zp =
Col[yp, yq, q ∈ Np]) > 0 ∀p ∈ Sy,Np ⊂ Sy, and let n equal
the total number of data points Zp, p ∈ Sy,Np ⊂ Sy.

2. Define local window factors γp by

γp = {f̃(Zp)/g}−α

where g is the geometric mean of the f̃(Zp) such that,

log g =
1

n

∑

p∈Sy,
Np⊂Sy

log f̃(Zp)

and α is the sensitivity parameter, a number satisfying 0 ≤
α ≤ 1, but best set to 1

2
.

3. Define the adaptive kernel estimate f̂(z) by

f̂(z) =
1

n

∑

p∈Sy,
Np⊂Sy

1

(hγp)d
K

{

z− Zp

hγp

}

where K is the kernel function and h is the window param-
eter. As in the ordinary kernel method, K is a symmetric
function integrating to unity

Figure 5.3: Adaptive Kernel Estimator

where δ is the Kronecker function. Note that N =
∑

λ∈Λ F (λ).

Before we can combine histogram bins together we need to know the expected

mean and variance of each bin count. Two bins should only be combined if both

their counts adequately fall within the variance of the mean of their counts.

The binomial distribution gives the probability of obtaining a specified number

of successes when sampling from a finite population. Since F (λ) represents the

number of successes for xs = λ from a finite population S, the probability P (Hλ =

F (λ)), λ ∈ Λ can be calculate using the binomial distribution function if the true
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probability distribution p(λ), ∀λ ∈ Λ is known,

P (Hλ = F (λ); p(λ), N) =

(

N

F (λ)

)

p(λ)F (λ)(1− p(λ))N−F (λ), λ ∈ Λ (5.14)

where,
(

N

F (λ)

)

=
N !

F (λ)!(n− F (λ))!
(5.15)

We are interested in the reverse situation. From the given counts F (λ), λ ∈ Λ

we wish to determine the expected value of p(λ) and the confidence bounds on the

estimate. The expected value is quite simply defined as,

p̂(λ) =
F (λ)

N
(5.16)

The confidence bounds on p(λ) may be found by approximating the binomial to

the normal distribution whereby µ = p(λ) and σ2 = p(λ)(1− p(λ)). This approxi-

mation gives reasonable results if Np(λ) and Np(λ)(1 − p(λ)) are both at least 5.

Alternatively, we may use the curves from Hahn and Shapiro [94] for 95 and 99

percent confidence. Neither are quite acceptable, as it is the low density areas of the

histogram that we are mostly interested in, where either Np(λ) or Np(λ)(1− p(λ))

is less than 5. Also the sample sets are usually much greater than 1000, which is

the limit of their curves. An alternative approach, based on the idea that p(λ) can

be bounded, is described in Fig. 5.4.

We now have a method for calculating the adaptive bin sizes in one-dimension,

now a complementary method for multi-dimensional histograms is required. Unfor-

tunately for a multi-dimensional histogram it is not obvious how the histogram bins

should be ordered from the smallest deviation to largest, as in the one-dimensional

case, Fig. 5.4 Step 3.

One method would be not to do the adaptive bin estimation in multi-dimensions,

but to do the bin estimation on each of the one-dimensional marginal histograms.

The multi-dimensional adaptive bins can then be formed by the “splitting” of the

histogram space with respect to each of the one-dimensional adaptive bin estimates.

Using the new bin sizes, a more efficient multi-dimensional histogram can be pro-

duced. However as the dimensions increase there will be a rapid increase of bins

that are under filled, therefore the problem is not solved.
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Adaptive Bin Estimator

1. Define individual sets S(λ) = λ, ∀λ ∈ Λ.

2. Define p(λ) = F (λ)/N, ∀λ ∈ Λ.

3. Define an index λ(i), λ, i ∈ Λ such that,

|F (λ(i))− F (λ(i)− 1)| ≤ |F (λ(i+ 1))− F (λ(i+ 1)− 1)|, ∀0 < i < L− 1

so λ is ordered with respect to i from smallest deviation in F (λ) to largest.

4. Choose a minimum probability Pmin such that,

Pmin ≤ min
λ∈Λ
{P (Hλ = F (λ); p(λ), n)} .

5. For i = 1 to L− 1 do

5.1. Let S = S(λ(i)) ∪ S(λ(i)− 1).

5.2. Let p = avg
j∈S
{p(λ(j))}.

5.3. If P (Hλ(j) = F (λ(j)); p, n) ≥ Pmin, ∀j ∈ S Then
bins Hλ(j), ∀j ∈ S can be acceptably represented as a combined bin
with an associated probability equal to p, such that,

S(λ(j)) = S ∀j ∈ S
p(λ(j)) = p ∀j ∈ S

6. The new histogram is then defined as, H′ = {H ′
λ = {Hi, ∀i ∈ S(λ)}}.

Figure 5.4: Adaptive Bin Estimator

A second method is not to use any spatial ordering of the bins, but to order the

bins with respect to their individual counts F (z), z ∈ Λd, where d is the dimension-

ality of the histogram. First all the bins with the same counts need to be grouped

together, such that Fig. 5.4 Step 1 is replaced by,

S(z) =
{

i : F (i) = F (z), i ∈ Λd
}

, ∀z ∈ Λd. (5.17)

Then the ordering of the bins need only be compiled for the set of unique counts

{F (z)} such that no two counts in the set {F (z)} are the same. However in high

multi-dimensional histograms, what one usually finds is that the only unique counts

are F (z) = 0 and F (z) = 1. This makes adaptive bin estimator unworkable for high
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multi-dimensional histograms, and therefore it is probably easier to abide with the

adaptive kernel estimator.

5.5 Multi-dimensional histogram compression

For Λ = {0, 1, . . . , L− 1} the domain of the d-dimensional histogram is equal to Ld

which, for even moderately sized d, is far too large to store in computer memory.

Even for L = 4 the space required becomes prohibitively large for d > 9. On the

other hand, if we were to store only those histogram bins that have counts greater

than zero, and regenerate the LCPDF as required from these counts, then the space

required to store the histogram would be reduced. But if the average bin counts

were less than d, then the memory space required to store the histogram would be

larger than that required to store the image itself.

The algorithms we used to analyse texture were designed to run on the mas-

sively parallel processor DECmpp 12000 Sx (MasPar r). The MasPar provided the

necessary decrease in run time, but it had a limited amount of available memory.

Therefore the algorithms were designed to use the least amount of memory space.

For this reason we chose not to store the d-dimensional histogram, but to calculate

the LCPDF as required directly from the image itself. However at any one time the

LCPDF only needs to be calculated in one dimension as the values on which it is

conditional are fixed. This means the LCPDF requires less memory space than a

d-dimensional histogram.

Alternatively a method of histogram compression may be used whereby the den-

sity associated with the histogram is approximated by a small set of densities. This

is accomplished by clustering the histogram data (see Section 5.5.1) and then con-

structing a unimodal density over each cluster (see Section 5.5.2), possibly in the

form of a standard multi-variate Gaussian. Popat and Picard [164] used precisely

this method with great success to produce a non-parametric causal model for tex-

ture synthesis. Their method was tried, but found to be too computationally and

memory expensive for the needs of the MasPar. Popat and Picard [164] also found

that although they could synthesise textures with neighbourhood systems of the

order o = 8, the method did not extrapolate well to higher order neighbourhoods.

On the other hand, the model presented in this thesis has been used to synthesise

textures using neighbourhood systems of up to an order of o = 32 with gratifying

results (see Chapter 7). In fact with our model, we believe that there is no limit to
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the size of the neighbourhood that may be used for texture synthesis.

The clustering algorithm employed by Popat and Picard [164] was the vector

quantisation algorithm LBG [133]. The LBG clustering algorithm comes from a

family of algorithms that have made refinements on the standard ISODATA clus-

tering algorithm [60].

Basic ISODATA clustering algorithm

Step 1 Assume data comprises of c clusters.

Step 2 Choose some initial values for the means µ̂1, . . . , µ̂c.

Step 3 Classify the n samples by assigning them to the class of the closest mean.

Step 4 Recompute the means as the average of the samples in their class.

Step 5 If any mean has changed value, go to Step 3; otherwise stop.

The ISODATA clustering algorithm and its compatriots (i.e., LBG algorithm [133])

rely on an initial guess of the means µ̂1, . . . , µ̂c. Generally these means are randomly

scattered over the sample domain. However this may be inappropriate for sample

data in large sample domains like our multi-dimensional histogram. The problem is

that if the sample data is not indicative of randomly scattered Gaussian distribu-

tions, then it is unlikely that the sample data will be evenly distributed among the

means. If the distribution is too skewed the resulting density estimate may not be

optimal with respect to the number of means. To better place the means amongst

the sample data, unsupervised clustering would probably be more appropriate. The

advantage of unsupervised clustering is that it uses the sample data to form the

means instead of trying to conform means to the sample data.

5.5.1 Unsupervised clustering

The aim of cluster analysis is to divide a given population into a number of clusters

or classes. The aim of unsupervised cluster analysis is to do this without the aid of

prior information concerning the properties — or even the existence — of the various

classes; the number of classes or the rules of assignment into these classes. All these

properties have to be discerned solely from the given data, without reference to a

training set. The following nonparametric unsupervised clustering methods have

been taken from Silverman [183].
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Hierarchical clustering

The hierarchical clustering algorithm was presented by Koontz, Narendra, and Fuku-

naga [124]. The basis of the algorithm is to assign a parent to each data point in

the histogram space. If no parent can be assigned, then that point becomes a root.

Each root is given a different class, and those points with parents take on the class

of their parent. The algorithm is called hierarchical because no point can have more

than one parent, but a parent can have many children.

Density estimates can be used to define a hierarchical structure on a set of

points {Zp, p ∈ Sy,Np ⊂ Sy} in d-dimensional space. Any density estimate f̂ can

be used [183], but Koontz, Narendra, and Fukunaga [124] used the following. Let

dij be the Euclidean distance between Zi and Zj. Define a neighbourhood ηi(ω) of

Xi as

ηi(ω) = {j : dij ≤ ω, j 6= i} (5.18)

where ω is the threshold. Then the density estimate f̂ may be defined as,

f̂(Zi) = |ηi(ω)| (5.19)

Of course this density estimate is not normalised, but it does not need to be for this

application.

For data points within distance ω of Zi, the parent of Zi is chosen as that data

point Zj which is steepest uphill from Zi with respect to the density estimate f̂ . In

other words, the parent of Zi is chosen as,

parenti = arg max
j;dij≤ω

f̂(Xj) ≥ f̂(Xi)

{

f̂(Xj)− f̂(Xi)

dij

}

(5.20)

For cases where there is more than one suitable parent, a tie breaking rule is applied

so only one parent exists. Nodes that have not been assigned a parent are labelled as

roots. These roots form the nucleus of the new clusters. If there are a large number

of data points Zi, then the effect of moving up the hierarchical structure is to “hill-

climb” on the density estimate f̂ towards a local maximum. Thus the divisions

between clusters will tend to occur along the “valleys” in the density estimate.

A liability of the hierarchical clustering algorithm is that the number of clusters

formed is largely dependent on the chosen threshold ω. There is an intuitive link

between the threshold ω and the window parameter h used to determine the size
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of the kernel in a nonparametric density estimator [183]. The larger the kernel, the

smoother the estimated density. In comparison, as the threshold is increased there

is more likelihood that the number of clusters will decrease. An algorithm that has

the ability to make the clustering more dependent on the sample data rather than

the threshold ω is the mean–shift clustering algorithm.

Mean–shift clustering

The mean–shift clustering algorithm in itself is still very much dependent on the

threshold ω. However the basis of the mean–shift clustering algorithm is to itera-

tively move the sample data into clusters. Therefore the algorithm lends itself more

readily to progressive clustering, by which after each full application of the algo-

rithm the threshold ω may be increased and the algorithm applied again. Wilson

and Spann [207] used precisely this method to decrease the influence of ω on the

formation of the clusters. They suggested that by adopting such an approach, a

stopping criteria could be used that was alternatively dependent on the movement

of the clusters.

The mean–shift clustering algorithm is a special case of Fukunaga and Hostetler’s [74]

gradient clustering algorithm. In their approach, the sample data is iteratively moved

up the gradient to become concentrated into a number of tight clumps. Denote Zm
i

as the position of object i at stage m of the procedure; initially Z0
i = Zi. A density

estimate f̂(m) is constructed from the Zm
i , and each point is moved in an uphill direc-

tion an amount proportional to the gradient of log f̂(m) at that point. The constant

of proportionality is a control parameter α.

Zm+1
i = Zm

i + α∇ log f̂(m)(Z
m
i )

= Zm
i +

α∇f̂(m)(Z
m
i )

f̂(m)(Z
m
i )

(5.21)

The quotient in Eq. (5.21) has several desirable properties. The incremental step

of Zm
i is dependent on the local density. Small densities induce large steps, whilst

large densities induce small steps. Thereby the objects Zm
i move quickly towards

high density regions. The step size is also governed by the control parameter α. It is

advisable to choose α conservatively; if α is chosen too large then objects are likely

to ‘overshoot’ clusters and the algorithm may not converge.

A special case of the gradient clustering algorithm arises when the density esti-
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mate f̂(m) is constructed from the kernel method using the multivariate Epanech-

nikov kernel [183],

Ke(z) =

{

1
2cd

(d+ 2)(1− zTz) if zTz < 1

0 otherwise
(5.22)

where cd is the volume of the unit d-dimensional sphere: c1 = 2, c2 = π, c3 = 4π/3,

etc. . Now suppose that the control parameter α is set to the value

α =
ω2

d+ 2
(5.23)

Then Eq. (5.21) reduces to the form

Zm+1
i = mean position of all points Zm

j lying within Euclidean

distance ω of Zm
i (5.24)

The algorithm given by Eq. (5.24) is called the mean–shift algorithm.

As mentioned at the beginning of this subsection, Wilson and Spann [207] used

the mean–shift algorithm to reduce the influence of the threshold ω on the forma-

tion of the clusters. They iteratively performed the mean–shift algorithm on a set

of data, increasing the threshold ω after each implementation of the algorithm. For

a stopping mechanism, they waited until after one such implementation of the al-

gorithm where the means did not move. However for unsupervised segmentation

purposes we found that their method was still inadequate [157]. Consider the case

where we have two independent clusters close to each other in feature space (each

represent their own class), also included in this feature space are outlying points that

are going to cluster. As the algorithm stands, the stopping mechanism is dependent

on all points in the feature space whether they are forming significant clusters or not.

Therefore it is quite possible that the two independent clusters will be merged into

one just so as to allow the other points to cluster; useful information will have been

lost for the sake of outlying points. To overcome just such a problem we proposed

a hierarchical clustering algorithm with significance [157].
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5.5.2 Basis functions

There are various means for compressing the data in the multi-dimensional his-

togram. All involve trying to fit a particular model to the data. Some common

types of models are;

• Radial Basis Functions

• Sum of Gaussian distributions

• Multi-dimensional Boxes

The Radial Basis Functions usually requires a neural network to optimally size and

place a number of the functions in the data space (histogram) [9, 145, 163, 64].

Sum of Gaussian distributions is more statistically sound, and can be calculated

very easily provided clusters have been identified within the data space [183]. The

third method using multi-dimensional boxes, also requires the clusters to be first

identified. It models these clusters as multi-dimensional boxes centred around each

cluster. The probability density function formed by this model is uniform within

each box and equal to the number of data points contained with in the box divided

by the total number of data points N . Even though the box estimate is generally

not as sound as an estimate by normal density functions, when the quantity of data

is very low compared to the histogram space, there will be an equivalent amount of

error associated with either estimate.

The important difference between the Gaussian model and the box model, is

that the Gaussian model can easily produce a positive definite PDF over the whole

histogram space. The box model could also, but it would require defining a default

box for the remainder of the data space and assigning it a probability significantly

lower than the smallest probability from any other box.

5.5.3 Adaptation for histogram compression

Histogram compression methods described in the previous subsection require clusters

to be found that can be described from a common mean. The description can be in

the form of a Gaussian function or a box, but both have to be centred on the mean

of the cluster and encapsulate all of its data points. The clusters formed DO NOT

have to give the best segmentation for the data, but do have to allow the kernel
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estimator to derive a respectable distribution f̂ . Therefore the chosen clustering

algorithm for histogram compression was the mean–shift algorithm, and the chosen

kernel estimator was the Gaussian kernel estimator.

Recalling Section 5.2, an example of a multi-dimensional histogram was presented

for a second order neighbourhood system o = 2, with the eight nearest neighbours of

a pixel. As sample data, a 1000× 1000 pixel image was used with a grey level range

of 0–15. This gave a histogram space of 169 ≈ 6.9 × 1010 pixels. However, with a

million sample points only about 1.5×10−3% of the histogram space would be filled.

To extrapolate a useful distribution from this sparse data set, density estimation is

required. However even with a density estimate of the histogram space, an LCPDF

which represents a vector through this space (as the neighbours are constant) will

most likely approximate a uniform distribution due to the low density of the sample

data.

At this juncture it might be considered that estimating the LCPDF from a

nonparametric density estimate of a multi-dimensional histogram may not be all

that useful. Some alternative approaches are listed below.

1. Use the adaptive kernel estimator to create the effect of annealing when us-

ing the LCPDF. This is done be defining the kernel of the estimator as a

multi-dimensional Gaussian function with an increased variance. Then as the

LCPDF is iteratively used, the variance is slowly reduced.

2. Instead of finding the grey level LCPDF of a pixel given its neighbours, find

the most likely grey level through some nearest neighbour point method. This

equates to something like the ICM method.

3. Produce a pseudo LCPDF as a function of distance to the sample data points.

Alternatively we might like to consider the application of the Gibbs-Markov

equivalence theorem. The significance of the Gibbs-Markov equivalence is that

the LCPDF P (xs|xr, r ∈ Ns) does not need to be contrived from a large multi-

dimensional histogram. Instead the LCPDF can be reduced to the form,

P (xs|xr, r ∈ Ns) =
exp

{
∑

C∈Cs
VC(x)

}

∑

λs∈Λ exp
{
∑

C∈Cs
VC(λs,x(s))

} (5.25)

The potential functions VC(x) are defined over cliques C ∈ C which are subsets of

the neighbourhood set N . The aim would be to determine a way of deriving the
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LCPDF, not from the multi-dimensional histogram of the neighbourhood, but from

lower dimensional histograms that represent the cliques of the neighbourhood.

5.6 Goodness-of-fit testing

A method for validating the nonparametric LCPDF estimate is via a goodness-of-fit

test [169], e.g., Pearson’s X2 test. However, there are a few problems in obtaining

a valid result. One reason for this is due to the high-dimensionality of the multi-

dimensional histogram, most frequency counts will be less than the recommended

5 counts [67, 169]. Also the high-dimensionality means that Pearson’s X2 statistic

tends to be no longer χ2 distributed but more normally distributed with mean and

variance as specified in [169].

The main question that needs to be asked when determining the goodness-of-fit

of the nonparametric LCPDF is whether the neighbourhood size of the LCPDF is

correct. We can never be sure that increasing the neighbourhood size will uncover a

lower entropy distribution. Consider, for example, a parity bit added to a random

bit stream. The PDF landscape will be 1/N featureless (high entropy) until the

neighbourhood is large enough to include the parity bit. At that step the PDF

becomes highly featured 0 or 2/N.

Presumably, in theory, we could expand the neighbourhood size incrementally

and test to see if the actual counts in the histogram bins are significantly different

than the high entropy expectations. However, the significance test would rapidly

run out of power as number of samples got lost in the high-dimensional space. Thus

this test will terminate at some large neighbourhood size.

Dubes and Jain [59] suggest goodness-of-fit testing is largely ignored in the MRF

literature due to the computational difficulty in obtaining the test statistic and

identifying the significance of it. In addition the relevance of the goodness-of-fit

test may be of little consequence in identifying whether the LCPDF has correctly

modelled the texture.

Although there is no optimal solution, if the required goodness-of-fit test is to

determine whether the LCPDF has correctly modelled a texture by capturing all of

its unique characteristics, the “chi-by-eye” test may be the only practical alterna-

tive. In which case, the goodness-of-fit test is accomplished by synthesising some

textures via the LCPDF and subjectively analysing the visual similarity of the syn-
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thetic textures to the training texture. This may indeed be acceptable for many

applications of texture analysis. Correct neighbourhood size could then be deter-

mined by reducing the neighbourhood size to the minimum required for ‘adequate’

reproduction.



Chapter 6

Strong Nonparametric MRF

Model

In this chapter we incorporate the theory from the MRF-Gibbs distribution equiva-

lence, from Chapter 3, into our own theory that demonstrates an elegant equivalence

between the strong MRF model and the ANOVA log-linear construction. From this

proof we are able to derive the general ANOVA log-linear construction formula. To

our knowledge, this relationship has not been demonstrated before.

6.1 Introduction

The underlying problem with determining the LCPDF is that the domain over which

the estimation process is performed is very large and only sparsely populated with

sample data. This makes reasonable estimation of the LCPDF very hard to achieve.

The model presented in this chapter has been constructed so as to reduce the domain

over which the estimation process is performed, while maintaining the integrity of

the LCPDF.

A model that is suitable for synthesising texture is not necessarily appropriate for

segmenting and classifying texture. Although the nonparametric MRF model can

capture all the unique characteristics of the texture it can also be easily overtrained.

If the neighbourhood size is increased unnecessarily, then there is a big danger of the

LCPDF being overtrained. One obvious limit to this is if the neighbourhood size is

increased to the size of the training image. In this case, if the image lattice was not

toroidal, we would just have the one sample point (representing the whole image)

97
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by which to estimate the extremely multi-dimensional LCPDF. Consequently, any

estimate of the LCPDF would not be representative of other like texture, and there-

fore the LCPDF could not be used to model that texture class. The other limit in

obtaining the correct neighbourhood size is if the neighbourhood size was reduced

to just one pixel. In this case we would obtain a very robust estimate of the grey

level histogram, but we would not have any spatial information. Clearly a compro-

mise needs to be sought between obtaining enough information in the LCPDF to

represent the texture, while still allowing the LCPDF to be generalised for other

like texture. This can be achieved via judicious selection of the neighbourhood size.

Finding the correct neighbourhood size is not the only method for obtaining

a generalised LCPDF of a texture. Using the same philosophy as Zhu, Wu, and

Mumford [211], a texture model used for segmentation and classification should

maximise its entropy while retaining the unique characteristics of the texture. The

principle of this philosophy is that the texture model should only model known

characteristics of a texture and no more. The model should remain completely

noncommittal towards any characteristics that are not part of the observed texture.

Zhu, Wu, and Mumford [211] use this philosophy to build their minimax model,

which was designed to obtain low entropy for characteristics seen in the texture

while maintaining high entropy for the rest, thereby attaining a model that infers

little information about unseen characteristics. This minimax entropy philosophy is

equivalent to reducing the statistical order of a model while retaining the integrity

of the respective synthesised textures.

Here we present our new version of the nonparametric model. It is still esti-

mated over the same neighbourhood as its nonparametric MRF counterpart, but

the Parzen-window estimation is performed over a set of smaller domains. We es-

timate the LCPDF as a function of its marginal distributions which reduces the

statistical order of the LCPDF. We are able to do this by assuming that there is un-

conditional independence between non-neighbouring sites for any subset of S. This

is a much stronger assumption than is made for a normal MRF which defines a site

as being unconditionally independent upon its non-neighbouring sites given all of

the neighbouring sites. The difference between the two models can be seen in their

mathematical definitions given by Eqs. (6.1) and (6.2). We show that the strong

MRF model is equivalent to the Analysis-of-variance (ANOVA) construction [22, 67].

This equivalence allows us to use the theorems from the ANOVA construction to

estimate the LCPDF of the strong MRF model.



6.2. STRONG MRF THEORY 99

MRF condition, Eq. (3.8)

Πs(xs|xr, r 6= s) = P (xs|xr, r ∈ Ns), ∀ x ∈ Ω, s ∈ S (6.1)

Strong MRF condition

Πs(xs|xr, r 6= s, r ∈ A ⊆ S) = P (xs|xr, r ∈ Ns ∩ A), ∀ x ∈ Ω, s ∈ S (6.2)

The strong MRF condition implies that the strong LCPDF, Πs(xs|xr, r 6= s, r ∈
A ⊆ S), is only dependent on those states {xr, r ∈ Ns ∩ A} regardless of whether

or not those states are from all the sites {r ∈ Ns}. This is contrary to the standard

MRF, for which when some of the states {xr, r ∈ Ns} are not given, the conditional

probability Πs(xs|x(s)) will in general no longer be conditionally on just those sites

in the neighbourhood Ns [148].

It was Moussouris [148] who first proposed that the Markovian system could be

simplified by imposing stronger conditions on the LCPDF, but it does not necessarily

follow that if an image can be modelled as an MRF that it can also be modelled as

a strong MRF. However, a common approach to simplifying complex mathematical

problems is to assume a degree of independence even when there is no basis for the

assumption. Consequently, we shall also assume an extra degree of unconditional

independence so as to simplify the MRF model to a strong MRF model.

6.2 Strong MRF theory

The theory presented in this section is our own theory on the strong MRF. The main

claim is Proposition 6.1, which we prove via two separate mathematical construc-

tions. The first proof, Section 6.3, is based on the similar proof by Grimmett [92] and

Moussouris [148] for the equivalence theorem of a standard MRF and a Gibbs distri-

bution. The second proof, Section 6.4, is based on the ANOVA construction [22, 67]

for testing independence in a distribution. As both mathematical constructions are

used to prove Proposition 6.1, they are equivalent in terms of the strong MRF. The

beauty of this statement is that ANOVA estimation can be used for the strong MRF

and vise versa.

Denote the marginal probability P (xA) = P (xs, s ∈ A), where A ⊆ S. For



100 CHAPTER 6. STRONG NONPARAMETRIC MRF MODEL

xA = {xs, s ∈ A}, denote the corresponding configuration space as ΩA such that,

xA ∈ ΩA, where ΩA = Λ|A|. (6.3)

Then the marginal probability P (xA) is defined as,

P (xA) =
∑

yS−A∈ΩS−A

Π(xAyS−A), A ⊆ S. (6.4)

The null probability P (x∅), defined by Eq. (6.4), is P (x∅) = 1. Note, however, P (x∅)

has no physical meaning. For any s 6∈ A ⊆ S, denote,

P (xs|xA) = P (xA+s)/P (xA) = P (xs|xr, r ∈ A). (6.5)

The notation A+ s is used to denote a set of sites A plus the site s, or alternatively

A− s denotes the same set A excluding the site s.

The strong MRF condition may be expressed in the form of the following identity.

Given two sites s, t ∈ S for which neither is a neighbour of the other, i.e., t 6∈ Ns ⇔
s 6∈ Nt, and given s, t 6∈ B ⊆ S, then the strong MRF condition of Eq. (6.2) can be

expressed as,

P (xs|xt, xB) = P (xs|xB)

P (xB+s+t)

P (xB+t)
=

P (xB+s)

P (xB)
. (6.6)

Proposition 6.1 Given a neighbourhood system N , the LCPDF of a strong MRF

may be decomposed as,

logP (xs|xr, r ∈ Ns) =
∑

C∈Cs

∑

s∈C′⊆C

(−1)|C|−|C′| logP (xs|xC′−s) (6.7)

or,

logP (xs, xr, r ∈ Ns) =
∑

C∈Cs

∑

s∈C′⊆C

(−1)|C|−|C′| logP (xC′) (6.8)

These equations may be further decomposed through Moussouris’s [148] decomposi-

tion to be expressed as,

P (xs|xr, r ∈ Ns) =
∏

C∈Cs

P (xs|xC−s)
nCsC , (6.9)
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and,

P (xs, xr, r ∈ Ns) =
∏

C∈Cs

P (xC)nCsC , (6.10)

respectively where,

nCsC = (−1)|C|
∑

C⊆C′∈Cs

(−1)|C
′|, (6.11)

and C,C ′ are cliques from the local clique set Cs = {C ∈ C : s ∈ C}.

6.3 Proof 1 of Proposition 6.1

Here we present our first proof of Proposition 6.1. This proof relies on the Möbius in-

version formula Eq. (3.16), and is based on the Grimmett’s [92] and Moussouris’s [148]

equivalence proof for a standard MRF and a Gibbs distribution. However we follow

the layout presented by Geman [78]. For any sets A,B ⊆ S, we show that for a

strong MRF, Π is a Gibbs distribution with respect to the strong N -potential,

VA(xA) =
∑

B⊆A

(−1)|A|−|B| logP (xB), ∀ x ∈ Ω. (6.12)

Moreover, for any element s ∈ A,

VA(xA) =
∑

s∈B⊆A

(−1)|A|−|B| logP (xs|xB−s), ∀ x ∈ Ω. (6.13)

This representation is unique among normalised potentials.

1. Π is Gibbs w.r.t. V : Assuming Eq. (6.12) and using the Möbius inversion formula

Eq. (3.16) for sets B,C ⊆ S,

logP (xB) =
∑

C⊆B

VC(xC), (6.14)

This is the second condition imposed on the two functions P and V . The first

condition is implied from Eq. (6.4) for which, given sets A,B,C ⊂ S such that

B ⊆ A ⊆ S, we have,

logP (xB) = log
∑

yA−B∈ΩA−B

P (xByA−B) (6.15)
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Then by applying the second condition of Eq. (6.14), we obtain,

∑

C⊆B

VC(xC) = log
∑

yA−B∈ΩA−B

exp
∑

C⊆A

VC(xByA−B)

= log









(

exp
∑

C⊆B

V (xC)

)









∑

yA−B∈ΩA−B

exp
∑

C⊆A,
C 6⊆B

VC(xByA−B)

















=
∑

C⊆B

V (xC) + log
∑

yA−B∈ΩA−B

exp
∑

C⊆A,
C 6⊆B

VC(xByA−B) (6.16)

Therefore, from Eq. (6.16) we arrive at the implicit condition that;

∑

yA−B∈ΩA−B

exp
∑

C⊆A,
C 6⊆B

VC(xByA−B) = 1 ∀ x ∈ Ω, B ⊆ A ⊆ S (6.17)

2. V is normalised: The potential V , defined by Eq. (6.12), is not normalised in

the conventional manner. In the original proof for a standard MRF, the potentials

were said to be normalised if VA(x) = 0 if xs = 0 for any s ∈ A. For the potential

defined by Eq. (6.12), this is not the case. However,

V∅(x∅) =
∑

B⊆∅

(−1)|∅|−|B| logP (xB) = logP (x∅) = log 1 = 0. (6.18)

Therefore, although the potential V is not normalised in the conventional manner,

it is bound by the criteria that V∅(x) = 0, and condition Eq. (6.17).

3. Eq. (6.12) ⇔ Eq. (6.13): For any s ∈ A,

VA(xA) =
∑

s∈B⊆A

(−1)|A|−|B| logP (xB) +
∑

s6∈B⊆A

(−1)|A|−|B| logP (xB)

=
∑

s∈B⊆A

(−1)|A|−|B|(logP (xB)− logP (xB−s))

=
∑

s∈B⊆A

(−1)|A|−|B| logP (xs|xB−s). (6.19)

4. V is a strong N -potential: Given that x is defined on a strong MRF with respect

to N , then V is a strong N -potential if VA(xA) = 0 ∀ A 6∈ C.
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Choose A 6∈ C, then ∃s, t ∈ A such that t 6∈ Ns ⇔ s 6∈ Nt.

VA(xA) =
∑

B⊆A

(−1)|A|−|B| logP (xB)

=
∑

B⊆A−s−t

(−1)|A|−|B| logP (xB) +
∑

B⊆A−s−t

(−1)|A|−|B+s| logP (xB+s) +

∑

B⊆A−s−t

(−1)|A|−|B+t| logP (xB+t) +
∑

B⊆A−s−t

(−1)|A|−|B+s+t| logP (xB+s+t)

=
∑

B⊆A−s−t

(−1)|A|−|B| log

[

P (xB)P (xB+s+t)

P (xB+s)P (xB+t)

]

= 0. (6.20)

Note identity Eq. (6.6) for a strong MRF was used. This modifies Eq. (6.14) to,

logP (xB) =
∑

C⊆B,
C∈C

VC(xC). (6.21)

Therefore a strong MRF, with Gibbs distribution Π, may be expressed with respect

to the N -potentials Eq. (6.12) or Eq. (6.13).

�

As Eq. (6.12) and Eq. (6.13) have been shown to be N -potentials, we can now

use them to prove Proposition 6.1. Consider a site s ∈ S, then the strong LCPDF

may be expressed as;

P (xs|xr, r ∈ Ns) =
P (xS)

P (xS−s)
= exp

[

∑

C∈S

VC(xC)−
∑

C∈S−s

VC(xC)

]

= exp

[

∑

s∈C∈S

VC(xC)

]

= exp

[

∑

C∈Cs

VC(xC)

]

logP (xs|xr, r ∈ Ns) =
∑

C∈Cs

∑

s∈C′⊆C

(−1)|C|−|C′| logP (xs|xC′−s) (6.22)

Where in the above equation, the N -potential Eq. (6.13) was used since all the

cliques C ∈ Cs contain the site s. This proves the first part of Proposition 6.1,

Eq. (6.7).

The second part of Proposition 6.1, Eq. (6.8) is proved by applying Möbius
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inversion formula Eq. (3.17) to Eq. (6.12) for the set of sites Ns + s ⊂ S;

logP (xs, xr, r ∈ Ns) =
∑

C⊆Ns+s

∑

C′⊆C

(−1)|C|−|C′| logP (xC′)

=
∑

C⊆Ns

{

∑

C′⊆C+s

(−1)|C+s|−|C′| logP (xC′) +
∑

C′⊆C

(−1)|C|−|C′| logP (xC′)

}

=
∑

C⊆Ns

{

∑

C′⊆C

(−1)|C+s|−|C′+s| logP (xC′+s) +
∑

C′⊆C

(−1)|C+s|−|C′| logP (xC′)+

∑

C′⊆C

(−1)|C|−|C′| logP (xC′)

}

=
∑

C⊆Ns

∑

C′⊆C

(−1)|C+s|−|C′+s| logP (xC′+s)

=
∑

C⊆Cs

∑

s∈C′⊆C

(−1)|C|−|C′| logP (xC′) (6.23)

Finally, to obtain Eq. (6.9) and Eq. (6.10) of Proposition 6.1 we may observe

that both Eq. (6.22) and Eq. (6.23) have the correct Möbius set decomposition with

respect to the set Ns. Even though the site s is included in the decomposition,

it is included in all cliques and therefore does not compromise the decomposition

over the set Ns. Therefore we can apply the Moussouris [148] conversion that gave

Eq. (3.43) ⇔ Eq. (3.44), to both Eq. (6.9) and Eq. (6.10) over the set of sites Ns to

obtain,

P (xs|xr, r ∈ Ns) =
∏

C∈Cs

P (xs|xC−s)
nCsC , (6.24)

and,

P (xs, xr, r ∈ Ns) =
∏

C∈Cs

P (xC)nCsC , (6.25)

respectively where,

nCsC = (−1)|C|
∑

C⊆C′∈Cs

(−1)|C
′|, (6.26)

and C,C ′ are cliques from the local clique set Cs = {C ∈ C : s ∈ C}.
�
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6.4 Proof 2 of Proposition 6.1

Here we present our second proof of Proposition 6.1. This proof is based on the

ANOVA construction [22, 67] for testing independence in a distribution. In ANOVA-

type notation, the probability P (xs, xr, r ∈ Ns) is decomposed into its marginal

distributions. This is expressed in terms of the general log-linear model [22]:

logP (xs, xr, r ∈ Ns) = logP (xA) =
∑

B⊆A

UB(xB). (6.27)

where A is explicitly denoted as A = Ns + s = {s, r ∈ Ns}. Neither Bishop et al.

[22] nor Fienberg [67] describe the ANOVA log-linear model in the general terms of

sets. It has been done here to show the generalisation of the model.

In the ANOVA log-linear model, U∅ is the grand mean of the logarithmic prob-

abilities logP (yA), yA ∈ ΩA:

U∅(x∅) =
1

|ΩA|
∑

yA∈ΩA

logP (yA). (6.28)

Note that the value of U∅ 6= V∅ from Eq. (6.18).

The ANOVA log-linear model is extrapolated as
∑

C⊆B UC(xC) being equal to

the mean of the logarithmic probabilities logP (xByA−B), yA−B ∈ ΩA−B :

∑

C⊆B

UC(xC) =
1

|ΩA−B|
∑

yA−B∈ΩA−B

logP (xByA−B). (6.29)

From Eq. (6.29), consider the summation of both sides over xs ∈ Λ for some s ∈ B,

that is:

∑

xs∈Λ

∑

C⊆B

UC(xC) =
∑

xs∈Λ

1

|ΩA−B|
∑

yA−B∈ΩA−B

logP (xByA−B) s ∈ B
∑

xs∈Λ

∑

C⊆B−s

UC+s(xC+s) +
∑

xs∈Λ

∑

C⊆B−s

UC(xC) =

1

|ΩA−B|
∑

yA−B+s∈ΩA−B+s

logP (xB−syA−B+s)

∑

xs∈Λ

∑

C⊆B−s

UC+s(xC+s) +
|Ωs|

|ΩA−B+s|
∑

yA−B+s∈ΩA−B+s

logP (xB−syA−B+s) =
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1

|ΩA−B|
∑

yA−B+s∈ΩA−B+s

logP (xB−syA−B+s)

∑

xs∈Λ

∑

C⊆B−s

UC+s(xC+s) = 0 ∀ s ∈ B (6.30)

Since B ⊆ A can be any sized set, by the principle of mathematical induction,

∑

xs∈Λ

UB(xs,xB−s) = 0 ∀ s ∈ B. (6.31)

This is the general form of the condition that was stated in [22] and [67].

The general log-linear model Eq. (6.27) imposes no restrictions on the probability

P (xA). However, if the set of sites s ∈ A are independent such that,

P (xA) =
∏

s∈A

P (xs), (6.32)

then the ANOVA construction of the logarithmic probability logP (xA) is given by

Eq. (6.27) with UB(xB) = 0, ∀ |B| > 1. This implies that P (xA) is not made up of

any interacting components between sites. In reference to the strong MRF model,

it is like saying P (xA) is only constructed from potentials defined on single sites.

Given that x is defined on a strong MRF with respect to N , then U is a strong

N -potential if UB(xB) = 0 ∀ B 6∈ C. Lets denote B 6∈ C. Then ∃s, t ∈ B such that

t 6∈ Ns ⇔ s 6∈ Nt. From Eq. (6.29),

∑

C⊆B

UC(xC) =
1

|ΩA−B|
∑

yA−B∈ΩA−B

logP (xByA−B)

UB(xB) =
1

|ΩA−B|
∑

yA−B∈ΩA−B

logP (xByA−B)−
∑

C⊂B

UC(xC)

=
1

|ΩA−B|
∑

yA−B∈ΩA−B

logP (xByA−B)−
∑

C⊆B−s

UC(xC)−
∑

C⊆B−t

UC(xC) +
∑

C⊆B−s−t

UC(xC)−
∑

C⊂B−s−t

UC+s+t(xC+s+t)

∑

C⊆B−s−t

UC+s+t(xC+s+t) =
1

|ΩA−B|
∑

yA−B∈ΩA−B

logP (xByA−B)−
∑

C⊆B−s

UC(xC)−
∑

C⊆B−t

UC(xC) +
∑

C⊆B−s−t

UC(xC))
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=
1

|ΩA−B|
∑

yA−B∈ΩA−B

logP (xByA−B)−

1

|ΩA−B+s|
∑

yA−B+s∈ΩA−B+s

logP (xB−syA−B+s)−

1

|ΩA−B+t|
∑

yA−B+t∈ΩA−B+t

logP (xB−tyA−B+t) +

1

|ΩA−B+s+t|
∑

yA−B+s+t∈ΩA−B+s+t

logP (xB−s−tyA−B+s+t)

=
1

|ΩA−B|
1

|Ωs+t|
∑

yA−B+s+t∈ΩA−B+s+t

logP (xByA−B)−

1

|ΩA−B+s|
1

|Ωt|
∑

yA−B+s+t∈ΩA−B+s+t

logP (xB−syA−B+s)−

1

|ΩA−B+t|
1

|Ωs|
∑

yA−B+s+t∈ΩA−B+s+t

logP (xB−tyA−B+t) +

1

|ΩA−B+s+t|
∑

yA−B+s+t∈ΩA−B+s+t

logP (xB−s−tyA−B+s+t)

=
1

|ΩA−B+s+t|
∑

yA−B+s+t∈ΩA−B+s+t

log

[

P (xByA−B)P (xB−s−tyA−B+s+t)

P (xB−syA−B+s)P (xB−tyA−B+t)

]

=
1

|ΩA−B+s+t|
∑

yA−B+s+t∈ΩA−B+s+t

log

[

P (xs|xB−syA−B)P (ys|xB−s−tyA−B+t)

P (ys|xB−syA−B)P (xs|xB−s−tyA−B+t)

]

= 0 (6.33)

From Eq. (6.33),
∑

C⊆B−s−t UC+s+t(xC+s+t) = 0 ∀ B 6∈ C since, from the strong MRF

identity Eq. (6.6), P (xs|xB−syA−B) = P (xs|xB−s−tyA−B+t) and, similarly,

P (ys|xB−syA−B) = P (ys|xB−s−tyA−B+t).

A supplementary result to Eq. (6.33), is that UB(xB) = 0 ∀ B 6∈ C. This can

be proved by the principle of mathematical induction, since B is an arbitrary set

contained within S, whereby ∃s, t ∈ B, such that t 6∈ Ns ⇔ s 6∈ Nt. For B = ∅
we have from Eq. (6.33), Us+t(xs+t) = 0. Then given UB(xB) = 0 for |B| < n, i.e.,

where the number of sites in B is less then n, we have from Eq. (6.33) for |B| = n,

0 =
∑

C⊆B−s−t

UC+s+t(xC+s+t) = UB(xB)+
∑

C⊂B−s−t

UC+s+t(xC+s+t) = UB(xB) (6.34)
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Therefore by the principle of mathematical induction, UB(xB) = 0 ∀ B 6∈ C.
For a strong MRF, the ANOVA log-linear model may now be rewritten as,

logP (xs, xr, r ∈ Ns) = logP (xA) =
∑

C⊆A,
C∈C

UC(xC). (6.35)

Other identities were used to obtain Eq. (6.33). One was the fact that given

ΩA−B = ΛA−B and Ωs+t = Λs+t, then,

|ΩA−B||Ωs+t| = |ΛA−B||Λs+t| = |ΛA−BΛs+t| = |ΛA−B+s+t| = |ΩA−B+s+t| (6.36)

Another was the fact that P (xByA−B) does not vary for ys ∈ Λ, s ∈ B, giving,

logP (xByA−B) =
1

|Ωs|
∑

ys∈Ωs

P (xByA−B) s ∈ B (6.37)

The ANOVA log-linear model, like the strong MRF model, specifies the prob-

ability P (xA) as being constructed from functions defined on interacting subsets

C ⊆ A. Comparing Eq. (6.21) and Eq. (6.35), both the strong MRF model and the

ANOVA log-linear model restrict these subsets C ⊆ A to cliques C ∈ C. However, in

the ANOVA log-linear model, the functions UC(xC) are not potentials, but represent

successive deviations from the mean. This difference is evident when the Möbius

inversion formula, Eq. (3.16), is applied to Eq. (6.29) to obtain,

UC(xC) =
∑

C′⊆C

(−1)|C|−|C′| 1

|ΩA−C′|
∑

yA−C′∈ΩA−C′

logP (xC′yA−C′). (6.38)

Even though the functions UC(xC) 6= VC(xC), ∀ C ∈ C, the marginal probabil-

ities P (xB), B ⊆ A are the same. Therefore we should still be able to derive the

general formula, Eq. (6.8), for P (xA) in terms of P (xB), B ⊆ A. First we need the

general equation for P (xB), B ⊆ A. In reference to Bishop et al. [22], marginal

P (xB) may be expressed as,

P (xB) =
∑

yA−B∈ΩA−B

P (xByA−B)

=
∑

yA−B∈ΩA−B

exp
∑

C⊆A

UC(xByA−B)
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=

{

exp
∑

C⊆B

UC(xB)

}















∑

yA−B∈ΩA−B

exp
∑

C⊆A,
C 6⊆B

UC(xByA−B)















logP (xB) =
∑

C⊆B

UC(xB) + log
∑

yA−B∈ΩA−B

exp
∑

C⊆A,
C 6⊆B

UC(xByA−B) (6.39)

This gives an equation for any P (xB), B ⊆ A. Note that Eq. (6.27) could not have

been used for any set B ⊆ A, but Eq. (6.27) can be derived from Eq. (6.39),

logP (xA) =
∑

C⊆A

UC(xA) + log
∑

yA−A∈ΩA−A

exp
∑

C⊆A,
C 6⊆A

UC(xAyA−A)

=
∑

C⊆A

UC(xA) + log exp 0

=
∑

C⊆A

UC(xA) (6.40)

Rearranging Eq. (6.39) we obtain,

∑

C⊆B

UC(xB) = logP (xB)− log
∑

yA−B∈ΩA−B

exp
∑

D⊆A,
D 6⊆B

UD(xByA−B) (6.41)

If the right hand side of Eq. (6.41) is regarded as just a function for the set B, then

it is clear we may apply the Möbius inversion formula, Eq. (3.16), to Eq. (6.41) and

obtain UC(xC) such that,

UC(xC) =
∑

B⊂C

(−1)|C|−|B|









logP (xB)− log
∑

yA−B∈ΩA−B

exp
∑

D⊆A,
D 6⊆B

UD(xByA−B)









(6.42)

We now have an equation for UC(xC) in terms of the marginal probabilities P (xB), B ⊆
A which we can substitute into Eq. (6.35), giving,

logP (xA) =
∑

C⊆A,
C∈C

UC(xC)
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=
∑

C⊆A,
C∈C

∑

B⊂C

(−1)|C|−|B|









logP (xB)− log
∑

yA−B∈ΩA−B

exp
∑

D⊆A,
D 6⊆B

UD(xByA−B)









=
∑

C⊆A,
C∈C

∑

B⊂C

(−1)|C|−|B| logP (xB)−

∑

C⊆A,
C∈C

∑

B⊂C

(−1)|C|−|B| log
∑

yA−B∈ΩA−B

exp
∑

D⊆A,
D 6⊆B

UD(xByA−B)

=
∑

C⊆A,
C∈C

∑

B⊂C

(−1)|C|−|B| logP (xB)− log
∑

yA−A∈ΩA−A

exp
∑

D⊆A,
D 6⊆A

UD(xAyA−A)

=
∑

C⊆A,
C∈C

∑

B⊂C

(−1)|C|−|B| logP (xB)− log exp 0

=
∑

C⊆A,
C∈C

∑

B⊂C

(−1)|C|−|B| logP (xB) (6.43)

Again the Möbius inversion formula, Eq. (3.16), was applied. This time it was used

to simplify the sum for UD(xByA−B). Although the summation was over the set A,

the correct Möbius set decomposition did occur for the sites A−s. Even though the

site s is included in the decomposition, it is included in all the sets and therefore

does not compromise the decomposition.

From Eq. (6.43) we have,

logP (xs, xr, r ∈ Ns) =
∑

C⊆Ns+s,
C∈C

∑

C′⊂C

(−1)|C|−|C′| logP (xC′) (6.44)

As in the derivation for Eq. (6.23), Eq. (6.44) can be re-expressed as,

logP (xs, xr, r ∈ Ns) =
∑

C⊆Cs

∑

s∈C′⊆C

(−1)|C|−|C′| logP (xC′) (6.45)

Therefore via the ANOVA log-linear model, Eq. (6.8) of Proposition 6.1 is proved.

The rest of Proposition 6.1 is subsequently proved, since the first proof of Proposi-

tion 6.1 showed a connection between the rest of the equations.

�

As a side note, if x is not defined on a strong MRF, then this means that
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UB(xB) 6= 0 ∀ B 6∈ C. The outcome of this is that instead of obtaining Eq. (6.45),

we obtain the general formula for the ANOVA construction,

logP (xA) =
∑

B⊆A

∑

C⊆B

(−1)|B|−|C| logP (xC) (6.46)

or equivalently, through Moussouris’s [148] decomposition,

P (xA) =
∏

C⊆A

P (xC)nAC , nAC = (−1)|C|
∑

C⊆B⊆A

(−1)|B| (6.47)

Although this formula was proposed by Moussouris for the strong MRF, the formula

can also be applied in the study of the ANOVA for contingency tables. It is not

known whether this has been made apparent to the contingency tables community.

6.5 Equivalence with ANOVA model

We presented two proofs of Proposition 6.1. The first method relied on the Möbius

inversion formula Eq. (3.16), and followed Grimmett’s [92] and Moussouris’s [148]

construction for the N -potential V , Section 6.3. The second proof was based on the

ANOVA log-linear model [22, 67] for testing variable independence in a distribution,

Section 6.4. Our proofs showed that the strong MRF model is equivalent to the

ANOVA construction.

Even though Eq. (6.10) from Proposition 6.1 represents the general clique de-

composition formula for P (xs, xr, r ∈ Ns), it is subject to condition Eq. (6.17).

Bishop et al. [22] did not derive the general formulas Eq. (6.10) or Eq. (6.47) for

the ANOVA construction, but did suggest under what conditions they exist. Given

a set of cliques over which Eq. (6.10) is calculated, Bishop et al. [22] outlined steps

for determining when Eq. (6.10) is valid.

Step 1 If for any s ∈ A such that s ∈ B, ∀ P (xB), then relabel all marginal

probabilities P (xB−s).

Step 2 If for any s ∈ A such that s ∈ B, ∀ P (xB) except for P (xC), then relabel

P (xC) to P (xC−s).

Step 3 If for any marginal probability P (xB) such that B∩C = ∅, ∀ C ⊂ A,C 6=
B, then remove P (xB) from the set of marginal probabilities.
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Step 4 Repeat Steps 1 – 3 until

1. No more than two marginal probabilities remain. This means that a

closed-form estimate of P (xA) exists, i.e., Eq. (6.10) is valid.

2. No further steps can be taken. This is an indication that no closed-

form estimate of P (xA) exists.

Basically the closed-form estimate of P (xA) exists, i.e., Eq. (6.10) is valid, if the

sets B ⊆ A of the marginal probabilities P (xB) do not form a loop of three or more

sets.

B

C D

E

B C

D E

(a) (b)

Figure 6.1: Examples of three or more sets that form a loop. These types of sets
can not be represented by the strong MRF formula.

In Fig. 6.1 shows two ways in which a loop of three or more sets may be formed.

Fig. 6.1 (a) shows a basic four site set A with pairwise subsets B,C,D,E. This

configuration does not reduce further via the steps outlined above. Therefore a

closed-form estimate of P (xA) does not exist. In the case of the strong MRF model,

a more common scenario is the construction of the LCPDF from the marginal prob-

abilities P (xC) from the set of cliques C ∈ Cs. Fig. 6.1 (b) shows an example of the

cliques (with four sites) for the neighbourhood N 2. As can be seen from Fig. 6.1 (b)

a loop is formed with respect to the outer sites. In fact for any neighbourhood

with cliques of three or more sites, a loop will be formed with respect to the outer

sites. Therefore the closed-form estimate of P (xA) only exists when the cliques are
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restricted to the pairwise. That is Eq. (6.10) is only valid for the auto-models of the

strong MRF. Proofs that these steps used to determine when Eq. (6.10) is valid are

also presented by Bishop et al. [22].

6.6 Estimation of the strong LCPDF

The estimation of the strong LCPDF, P (xs|xr, r ∈ Ns), is performed by first esti-

mating each marginal probability P (xC), ∀ C ∈ Cs and then combining them to

obtain P (xs|xr, r ∈ Ns). Each marginal probability P (xC), ∀ C ∈ Cs is estimated

in the same way as the nonparametric LCPDF estimate Eq. (5.12). However, in

the case of the marginal estimates, Eq. (5.12) is calculated with respect to C rather

than Ns. The set of sample vectors, {Zp, p ∈ Sy,Np ⊂ Sy}, are therefore modified

to {Zp, p ∈ Sy, C ⊂ Sy}. The dimensionality of z is modified to d = |C|, and the

optimal window parameter hopt is recalculated for each C ∈ Cs, Eq. (5.11).

P (xC) =
1

nhdopt

∑

p∈Sy,
Np⊂Sy

exp

[

− 1

2h2
opt

(z− Zp)
T(z− Zp)

]

(6.48)

where z = [xC ]T, C ∈ Cs, and n = |{p ∈ Sy,Np ⊂ Sy}|. Given each marginal

probability estimate P (xC), ∀ C ∈ Cs the strong LCPDF P (xs, xr, r ∈ Ns) may

then be estimated.

The direct estimate technique for determining P (xs, xr, r ∈ Ns) from its marginal

probabilities is given by Eq. (6.10). However, this direct estimate technique is only

valid for particular clique decompositions of Eq. (6.10) [21, 67, 88]. The steps for

determining the existence of the direct estimate are given by Bishop et al. [22]. For

the neighbourhood systems defined by Eq. (3.9), the steps identify that the direct

estimate only exists for pairwise clique decompositions. That is, Eq. (6.10) is only

valid for cliques restricted to no more than two sites, |C| ≤ 2.

Although the direct estimate technique is limited to cases when only pairwise

cliques are used, the iterative proportional fitting technique may be used for all

clique decompositions of Eq. (6.10). Fienberg [67] and Bishop et al. [22] describe

the iterative proportional fitting technique for a distribution defined in three di-

mensions. The technique is easily generalised to estimating P (xs, xr, r ∈ Ns) in

multi-dimensions given the marginal probabilities P (xC), ∀ C ∈ Cs, Fig. 6.2.
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Iterative proportional fitting technique

1. Given P (xC), ∀ C ∈ Cs and δ ≥ 0.

2. Set P (xs, xr, r ∈ Ns)(0) = P (xA)(0) = 1
|ΩA| , ∀ xA ∈ ΩA

3. For k = 0 to ∞ do

3.1. For ∀ C ∈ Cs set

P (xA)(k+1) =
P (xC)P (xA)(k)

∑

yA−C∈ΩA−C
P (xCyA−C)(k)

, ∀ xA ∈ ΩA

3.2. If |P (xA)(k)−P (xA)(k−1)| < δ, ∀ xA ∈ ΩA then break

4. Done

Figure 6.2: Iterative proportional fitting technique

Regardless of the number of grey levels, |Λ|, and which cliques are used C ∈ Cs,
the minimum amount of memory space required to iteratively calculate the LCPDF

is 2|Ns|+1. This is because in order to calculate P (xs, xr, r ∈ Ns) via the iterative

proportional fitting technique, Fig. 6.2, it is possible to reduce the configuration

space ΩA down to the binary space {(ys == xs), (yr == xr), r ∈ Ns}. This gives

|ΩA| = 2|Ns|+1. Even so, in our experiments run on the MasPar r, we found that

the memory requirements only allowed the iterative proportional fitting technique

of P (xs|xr, r ∈ Ns) for (|Ns| + 1) < 10. This meant that the iterative proportional

fitting technique could only be used for neighbourhood systems N 1 and N 2. Al-

though, we obtained the necessary decrease in run time in using the MasPar r, it

was at the expense of a comparatively reduced amount of available memory. Be-

cause of this we found that we could not estimate the LCPDF for neighbourhoods

larger than ten sites.

A variation on the direct estimate technique Eq. (6.10) is the simple estimate,

logP (xA) =
∑

C∈Cs,
C 6⊂C′∈Cs

logP (xC), (6.49)

where C,C ′ are cliques. The simple estimate yields an estimate that can be cal-

culated on the MasPar r for large neighbourhood systems and various clique de-

compositions. The simple estimate is like the direct estimate except for the fact



6.7. GOODNESS-OF-FIT TESTING 115

that it only incorporates those marginal probabilities P (xC) defined on cliques

{C ∈ Cs, C 6⊂ C ′ ∈ Cs}. These are the major cliques contained in the local clique

set. The clique decomposition summation of Eq. (6.49) is then only performed over

those cliques contained in the local clique set which are not subsets of other cliques

contained in the local clique set.

The simple estimate Eq. (6.49) does not give the correct estimate, but it does

give an estimate that may be used in the synthesis process. As only the major

marginals are used in the summation of Eq. (6.49) and are not counterbalanced

by smaller marginals as in Eq. (6.10), the estimate Eq. (6.49) of P (xs, xr, r ∈ Ns)
is biased towards those sites {s, r, r ∈ Ns} contained in multiple major cliques.

Intuitively this means the LCPDF will be more “peaked.” For texture synthesis

purposes a “peaked” LCPDF means that the Gibbs sampler will behave more like

the ICM algorithm [78]. Both algorithms may be used for synthesising textures and

are explained in Chapter 4.

6.7 Goodness-of-fit testing

As the strong MRF is equivalent to the ANOVA model it is reasonable to consider

if the goodness-of-fit tests used for the ANOVA model are applicable for the strong

MRF model.

The following test statistics are generally used for ANOVA:

X2 =
∑ (Observed - Expected)2

Expected
, (6.50)

G2 = 2
∑

(Observed) log

(

Observed

Expected

)

, (6.51)

where the summation in both cases is over all cells in the table, or in our case bin’s

in the multi-dimensional histogram. Eq. (6.50) is Pearson’s chi-square statistic, and

Eq. (6.51) is the log-likelihood ratio statistic [67]. Both statistics are special cases

of the power divergence statistic [169].

If the fitted model is correct and the total sample size is large (i.e., the sample

size is at least ten times the number of cells in the table), both X2 and G2 have

approximate χ2 distributions with degrees of freedom equal to the number of bins

minus the number of parameters in the model. However Larntz [129] suggests that

for testing a nominal 0.05 level of significance, a minimum expected bin count of
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approximately 1.0 is sufficient. Under such conditions when there are relatively few

samples with respect to the number of bins, Larntz [129] found that Pearson’s chi-

square statistic X2 performed better than the log-likelihood ratio statistic G2 [67].

Under the sparseness assumption (when the number of bins tends to infinity,

but the expected count in each bin remains constant) the X2 and G2 statistic are

asymptotically normal with a mean and variance given by Morris [146] and qualified

by Read and Cressie [169]. This result was later extended by Dale [51] for product-

multinomial sampling (i.e., when one marginal constraint is given). However we are

interested in the case where there are multiple constraints, ones that are imposed

by our marginal distributions for each clique. Koehler [123] provided a Monte Carlo

study of sparse contingency tables requiring parameter estimation, which is equiva-

lent to having multiple constraints. Koehler [123] observed that the limiting normal

distribution was more accurate for the G2 statistic than for the X2 statistic.

However the limiting normal distribution for the X2 andG2 statistic is really only

technically correct when given large amounts of sample data. The accuracy of the

goodness-of-fit test for small amount of sample data can be improved with a modified

version of Fisher’s exact test used for 2× 2 contingency tables [22, 68, 202]. Fishers

exact goodness-of-fit test is given by the sum of all hypergeometric probabilities

of 2 × 2 contingency tables that fit the marginal constraints and for which the

probabilities are less than the hypergeometric probability of the observed table.

This type of analysis can be extended to larger contingency tables [169]. Mehta and

Patel [141] present an algorithm that calculates only those tables whose probabilities

are less than the probability of the observed table. This is supposed to be very

efficient for large tables. Alternatively, Agresti et al. [2] takes a sample set of

possible tables to estimate the exact goodness-of-fit. This is analogous to a Monte

Carlo approach [84]. Verbeek and Kroonenberg [202] provide a useful survey of

algorithms designed to calculate the exact goodness-of-fit in large contingency tables

with a small amount of sample data.

Unfortunately we found that these tests were not able to successfully discriminate

the goodness-of-fit of different orders of the strong MRF model due to the high

correlation between neighbouring pixel values and therefore the marginal constraints.

This problem was brought to light when we tried to use entropy measurements to

determine the optimal set of cliques to use for the strong MRF. We found that it

was virtually impossible to discriminate the cliques on the basis of the entropy of

their marginal distributions, Appendix B.3. We therefore conclude that, although
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not optimal, the best practical approach for performing a goodness-of-fit test for the

strong MRF model is to again compare synthetic textures derived from the model

with the original texture. If the synthetic textures are found to be subjectively

similar to the original, we conclude that order of the strong MRF is amenable to the

texture. Again “chi-by-eye” is better than no estimate if no other goodness-of-fit

test is available.
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Chapter 7

Synthesising Texture

This chapter details our own multiscale texture synthesis algorithm incorporating

our novel pixel temperature function. Other variations of this synthesis algorithm

are also outlined. From this chapter we have published four papers showing the

merits of the nonparametric and strong nonparametric MRF models [152, 155, 153,

156]. Of particular interest is the texture synthesis by the strong nonparametric

MRF model, which identified textures that could be completely represented by just

third order statistics [153].

7.1 Introduction

Texture synthesis is a means of testing whether the LCPDF has captured the textural

characteristics required to model a particular texture. How specific the required tex-

ture characteristics need to be is governed by the intended application of the texture

model. The aim of this thesis is to develop a texture model suitable for open-ended

texture classification, therefore, able to capture all textural characteristics unique to

a training texture. We propose that if the model is capable of synthesising texture

that is visually indistinguishable from the training texture, then it has captured all

the visual characteristics of that texture.

There have been quite a few attempts at synthesising textures, but none of the

conventional techniques have produced a general model for natural textures [95].

However new methods based on stochastic modelling of various multi-resolution

filter responses have produced impressive results [23, 211, 103, 149]. Popat and

Picard [164] successfully used a high order causal nonparametric multiscale MRF

119
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model to synthesise structured natural textures. In fact our approach is indicative

of theirs, but where they suffered from phase discontinuity we used our method of

local annealing to synthesise highly representative examples of natural textures.

We perform texture synthesis via a multiscale synthesis algorithm incorporating

our novel pixel temperature function. In the synthesis process, the pixel temper-

ature function is responsible for “compressing” various dimensions of the multi-

dimensional histogram (or the nonparametric LCPDF). The degree of compression

for each dimension is judged by how much we want a pixel to be conditionally de-

pendent on its corresponding neighbourhood pixel. If all the dimensions associated

with the neighbourhood pixels were completely compressed, the resultant LCPDF

would amount to a simple normalised histogram, and each pixel would no longer be

conditionally dependent on its neighbouring pixels. We use this approach to gently

“grow” the multi-dimensional histogram from a simple histogram to the desired di-

mensionality as the texture undergoes synthesis. This is analogous to annealing [82],

but in this case it allows us to use large multi-dimensional histograms (or LCPDFs

with large neighbourhood systems) to model texture.

The multiscale synthesis algorithm uses stochastic relaxation (SR) [50, 80, 82],

Section 4.4, to synthesise an MRF at each scale. SR starts with an image and

iteratively updates pixels in the image with respect to the LCPDF. This generates

a sequence of images {X(0),X(1), . . . ,X(n)} with the property,

lim
n→∞

P (X(n) = x|X(0) = x(0)) = Π(x) ∀x ∈ Ω, (7.1)

Two well-known SR algorithms are the Metropolis algorithm [142], Fig. 4.4, and

the Gibbs sampler [82], Fig. 4.5. Besag [19] introduced deterministic relaxation al-

gorithm called the Iterative conditional modes (ICM) algorithm, Fig. 4.6. Synthesis

by the Gibbs sampler tends to converge to a texture defined by the equilibrium

condition Eq. (7.1), whereas for the ICM algorithm, the synthesis tends to a texture

more conditional on the starting image X(0) = x(0).

In the following notation (Y = y ∈ Ω) will refer to the training texture and

(X = x ∈ Ω) will refer to the synthesised texture. That is the LCPDF is estimated

from the image (Y = y ∈ Ω), and used to synthesise images (X = x ∈ Ω). The set

of sites over which Y is defined will be denoted as Sy. While S will denote those

sites on which X is defined.
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7.2 Multiscale relaxation

The basic concept of Multiscale Relaxation (MR) is to relax the field at various “res-

olutions.” The advantage is that some characteristics of a field are more prominent

at some resolutions than at others. For example, high frequency characteristics are

prominent at high resolutions, but are hidden at low resolutions. In contrast, low

frequency (global) characteristics are more easily resolved at low resolutions [86].

A problem with the single-scale relaxation process is that the global image char-

acteristics evolve indirectly in the relaxation process [26, 86, 193]. Typically these

global image characteristics only propagated across the image lattice through local

interactions. This results in a slow evolution process which is easily disrupted by

phase discontinuities, see Section 7.3. Long relaxation times are required to obtain

an equilibrium, as defined by Eq. (7.1).

MR attempts to overcome the problem of the global image characteristics evolv-

ing slowly and indirectly by implementing SR at various resolutions; first at a low

resolution and then progressively at higher resolutions [86, 23, 134, 27, 8]. The infor-

mation obtained from SR at one resolution is used to constrain the SR at the next

highest resolution. By this method, global image characteristics that have been

resolved at a low resolution are infused into the relaxation process at the higher

resolution. This helps reduce the number of iterations required to obtain equilib-

rium [193].

As a consequence of implementing MR, Bouman and Liu [26] and Derin and

Won [55] found, by experimentation, that it helped the ICM algorithm to find

convergence to the global maximum of the joint distribution Π. Under SR the

ICM algorithm tended to cause convergence to a local maximum over Π that was

dependent on the initial image. This MR observation, by Bouman and Liu [26] and

Derin and Won [55] for the ICM algorithm, was suggested to be due to the various

image characteristics being better infused into the synthesised image over multiple

resolutions. Coarse image characteristics were found to be better infused into the

image at low resolutions, while fine image characteristics were found to be better

infused into the image at high resolutions. Basically, the relaxation processes at a

high resolution was found to be less susceptible to being trapped in a local maxima

if the desired coarse image characteristics had been pre-infused into the image at a

lower resolution.

As the multiscale relaxation process first infuses the coarse image characteristics
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into the synthetic image, and then at each higher resolution successively adds more

detail, the LCPDF does not need to be correctly defined for all resolutions. The

LCPDF only needs to contain enough information to add the extra detail. This is

an advantage when the LCPDF is defined over a large neighbourhood. Under such

circumstances the domain of the LCPDF usually only contains a small area where

there is relevant information. Most of the domain could be quite easily modelled as

a uniform distribution. This is due to the relatively small amount of data available

to construct the LCPDF over the large domain. This means that if the LCPDF

was used in single-scale relaxation, the relaxation process would tend to languish

in the domain of the LCPDF where it was relatively uniform and therefore non

convergent. The multiscale relaxation process overcomes this liability by restricting

the domain over which the LCPDF is sampled. As mentioned before, this is done

by pre-infusing course image characteristics into the synthetic image.

increasing
image

resolution

?

l = 2

l = 1

l = 0 ?

decreasing
grid
level

Figure 7.1: Possible grid organisation for multiscale modelling of an MRF. A small
portion of three levels of a 2:1 multigrid hierarchy is shown. Only connections
representing nearest-neighbour interactions are included.

MR may be best described through the use of a multigrid representation of the

image as shown in Fig. 7.1. The grid at level l = 0 represents the image at the

original resolution, where each intersection point ‘•’ is a site s ∈ S. The lower

resolutions, or higher grid levels l > 0, are decimated versions of the image at level

l = 0. This multigrid representation is also used by Popat and Picard [164].

Given an N×M image, X, we define the rectangular lattice on which to represent
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this image at grid level l = 0 as,

S = {s = (i, j) : 0 ≤ i < N, 0 ≤ j < M} , (7.2)

The multigrid representation of the image, X, is then the set of images, Xl, for grid

levels l ≥ 0. The image, Xl, is defined on a lattice S l ⊂ S, where,

Sl =

{

s = (2li, 2lj) : 0 ≤ i <
N

2l
, 0 ≤ j <

M

2l

}

. (7.3)

The set of sites S l at level l, represents a decimation of the previous set of sites S l−1

at the lower grid level l − 1. On this multiscale lattice representation, we need to

redefine the neighbourhood system for each grid level l ≥ 0. Therefore, we define

the neighbourhood N l
s, s ∈ Sl, with respect to order o as,

N l
s=(2li,2lj) = {r = (2lp, 2lq) ∈ Sl : 0 < (i− p)2 + (j − q)2 ≤ o}. (7.4)

The image Xl+1 = xl+1 is defined with respect to the image Xl = xl by the

function q whereby,

X l+1
s=(i,j) = q

(

xl(i,j), x
l
(i+2l,j), x

l
(i,j+2l), x

l
(i+2l,j+2l)

)

(7.5)

Two typical forms of the function q are

1. local averaging

q(x1, x2, x3, x4) =
x1 + x2 + x3 + x4

4
(7.6)

2. local decimation

q(x1, x2, x3, x4) = x1 (7.7)

The multigrid displayed in Fig. 7.1 shows the connections involved in the decimation

approach.

Other typical approaches to the multiscale representation of an image involve

Gaussian Filters, Laplacian of Gaussian Filters [30, 211], Gabor Filters [149, 206,

211], and wavelets [8, 25, 24, 103, 134]. The advantage of the Laplacian, Gabor,

and wavelet filters is that they can be orthogonalised. When constructing a multi-

scale representation of an image, they allow each resolution to be derived from an
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orthonormal filter. The advantage of such an approach is that each resolution is

then independent of the others [44]. This multiscale representation supports data

compression. However the disadvantage of this representation is that the higher res-

olutions are no longer dependent on the lower resolutions. On the other hand, the

advantage of using decimation in the multiscale representation is that not only is it

easy to constrain the relaxation process from one resolution to another, but there

is also no loss of information in the representation. In the synthesis process, this

is more crucial than finding a compact representation. If, on the other hand, the

aim was to model texture for classification purposes, then maybe using orthonormal

wavelets would be an advantage.

The MR algorithm is formed by constraining an SR processes at each level, l, by

the result of the SR process at the previous level, l+1. In [26] the relaxation process

was constrained by initialising the image Xl = xl with respect to the previous image

Xl+1 = xl+1 and then using the ICM relaxation algorithm. We, on the other hand,

have chosen the method proposed by Gidas [86], where the constraint imposed by

the previous image, Xl+1 = xl+1, is maintained through the entire SR process at

level l and successive levels k < l. The constraint is such that at any point through

the SR process at level l, the image Xl+1 = xl+1 may still be obtained from Xl, by

the multigrid representation.

The MR algorithm starts at the lowest resolution (highest grid level) with a

random image, XL−1 = xL−1 ∈ Ω, defined on an appropriate lattice SL−1, where L

is the number of grid levels. The random image XL−1 = xL−1 then undergoes SR

until an equilibrium state is reached. The relaxed image XL−1 = xL−1 is then used

to constrain further SR at lower grid levels. The MR algorithm moves sequentially

down from one level to the next. At each level, SR of image, Xl, is constrained by

the image Xl+1 = xl+1. This continues until the final SR is performed at level l = 0.

The final image X0 = x0 is the new synthetic texture.

At each grid level 0 ≤ l < L, the SR algorithm requires a valid LCPDF. Gi-

das [86] showed how to calculate the LCPDF at level l given a parametric LCPDF

at level l − 1. For a nonparametric LCPDF, as we use, the LCPDF at level l has

to be calculated directly from a training image, Y, of homogeneous texture. To

calculate the LCPDF at level l, the image, Y, is first scaled to the corresponding

resolution to obtain an image, Yl. From this image the neighbourhood function

N l is used to draw the sample data from which to construct the LCPDF with the

appropriate density estimation. Although the computation time required to calcu-
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late the LCPDF at each level decreases as the level increases, the reliability of the

estimation also decreases due to the decreasing amount of available data. This effect

is accounted for in the density estimation scheme with an increase in the window

parameter hopt which in turn “smoothes” the LCPDF.

The decrease in sampling data can be counteracted by resampling the multigrid

at shifted pixel locations. That is, if the multigrid structure reduces the image size

by say four at each ascending grid level, then the multigrid can be resampled at

four shifted pixel locations to produce four separate representations of the image at

that grid level. This would maintain the same amount of data for each grid level,

while still performing the necessary subsampling. However, if such a scheme was

implemented, then consideration would need to be given to two possible problems.

First, if the subsampling scheme of the multigrid structure incorporated filtering,

then this would result in an increase in correlation between data samples at each

ascending grid level. Secondly, if no filtering was incorporated into the subsampling

scheme of the multigrid structure, then there would lie the distinct possibility that

the image representations at the same grid level could become statistically dissimilar.

This problem would be especially apparent for a highly structured texture, e.g.,

consider the effect on a checkerboard pattern when using the decimation subsampling

scheme (see Section 7.2.2). There is high potential that these problems will have

a detrimental effect on the simulation algorithm. However, for the classification

algorithm, they are likely to be inconsequential.

As mentioned previously we use the Gidas [86] MR algorithm whereby the con-

straint imposed by the previous image Xl+1 is maintained through the entire relax-

ation process at level l. This is accomplished by multiplying the joint distribution Π

by the probability pl(Xl+1 = xl+1|Xl = xl). For notational purposes the probability

pl will be rewritten as pl(xl+1|xl).
The probability pl(xl+1|xl) is usually chosen to be a product of local conditional

probabilities. Given a site r = (i, j) ∈ S l+1 whose pixel is directly dependent on the

lower grid pixels at the sites S l(r = (i, j)) = {(i, j), (i+2l, j), (i, j+2l), (i+2l, j+2l)},
then

pl(xl+1|xl) =
∏

r∈Sl+1

plr(x
l+1
r |xlt, t ∈ Sl(r)), (7.8)

When a pixel at site s is updated in MR, it is updated with respect to the

LCPDF and the local conditional probability pl(xl+1|xl). Therefore the LCPDF
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P l(xls|xlr, r ∈ Ns) may be redefined as,

P l(xls|.) = P l(xls|xlr, r ∈ N l
s)p

l
r(x

l+1
r |xlt, s, t ∈ Sl(r)). (7.9)

A special case of the probability plr is when it is equated to the Kronecker function

such that,

plr(x
l+1
r |xlt, t ∈ Sl(r)) = δ(xl+1

r , q(xlt, t ∈ Sl(r))), (7.10)

where δ(α, β) = 0 if α 6= β, and δ(α, β) = 1 if α = β. The function q is the scaling

function discussed previously. The constraint imposed by the Kronecker function

δ effectively restricts the sampling of the LCPDF to those pixel values λs ∈ Λ for

which

xl+1
r = q(λs, x

l
t, t 6= s, t ∈ Sl(r)), s ∈ S l(r) (7.11)

There are two general approaches to the scaling function q: decimation or aver-

aging. It may seem that the local averaging approach would be the more intuitive

choice for representing the image at lower resolutions. However when applying MR

there are distinct advantages in using local decimation. For one, MR requires syn-

thesising an image at one level and propagating the results of the synthesis to lower

levels. The propagation of information down the levels involves the inverse of q

which is easier under local decimation rather than local averaging [86]. Another less

obvious advantage is that the state space Λ in the decimation approach is the same

at all resolutions.

7.2.1 Averaging approach

In the averaging approach the scaling function is defined over a 2 × 2 set of pixels

whereby,

xl+1
r = q(xlt, t ∈ Sl(r)) =

1

4

∑

t∈Sl(r)

xlt (7.12)

where the result of the division is rounded to the nearest integer. Given the pixel

value xl+1
r from the image X l+1 and the current pixel values {xlt, t ∈ Sl(r)} from the

image X l, a pixel xls, s ∈ Sl(r) can be updated to a value λs ∈ Λ with respect to

the LCPDF under the constraint imposed by Eq. (7.12). If Λ = Z, then there are

just four consecutive values λs ∈ Λ for which xls = λs is a solution to Eq. (7.12).

Therefore the LCPDF is at most only sampled over four consecutive values λs ∈ Λ

imposed by the constraint of Eq. (7.12). This means that the information contained
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in the LCPDF is under-utilised. To overcome this sampling deficiency but still

constrain the SR process, the sampling process can be expanded to included two or

more pixels {xls, s ∈ Slsub(r) ⊆ Sl(r)}. The image Xl is then relaxed over two or

more pixels at the same time with respect to the LCPDF defined as,

P l(xls, s ∈ Slsub(r)|.) = P l(xls, s ∈ Slsub(r)|xlt, t ∈ Ns)plr(xl+1
r |xlt, t ∈ Sl(r))

≈ plr(x
l+1
r |xlt, t ∈ Sl(r))

∏

s∈Sl
sub(r)

P l(xls|xlt, t ∈ Ns). (7.13)

This means that instead of the state space being restricted to one λs ∈ Λ, the state

space is expanded to λns = {λs, s ∈ Slsub(r)} ∈ Λn with 2 ≤ n ≤ 4. This new state

space is restricted by the same condition of Eq. (7.12) whereby,

xl+1
r = q(λns , x

l
t : t 6∈ Slsub(r), t ∈ Sl(r)), λns = {λs, s ∈ Slsub(r)} (7.14)

and therefore the size of the new restricted state space ≤ 4|Λ|n−1.

Unfortunately in experiments when texture was synthesised via the averaging

approach, it was found that the large size of the state space impeded the speed of

the relaxation algorithm. The time taken to complete one iteration of the relaxation

process was found to be so long that it made the process impractical.

7.2.2 Decimation approach

In the decimation approach the scaling function is defined over a 2× 2 set of pixels

whereby

xl+1
r = q(xlt, t ∈ Sl(r)) = xlr. (7.15)

In this case a direct mapping of the pixel values exist from one level down to the

next, which means that the inverse function of q exists.

q−1(xl+1
r=(i,j)) = {xlt, t ∈ Sl(r)}

= {xl(i,j) = xl+1
(i,j);λ

l
(i+2l,j), λ

l
(i,j+2l), λ

l
(i+2l,j+2l)} λ ∈ Λ.(7.16)

Sampling the LCPDF with respect to s ∈ S l(r) results in two possible cases. If

the site s = r then the value of xls is fixed by the inverse function of Eq. (7.16). If

on the other hand s 6= r, s ∈ S l(r) then the LCPDF is sampled over the complete

state space Λ. Therefore the constraint imposed on the SR at level l by the image
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Xl+1 = xl+1 fixes the pixels

X l
r = xl+1

r , ∀r ∈ Sl+1 (7.17)

and the rest of the pixels undergo non-restricted SR. For the ease of implementing

the MR constraint, we have chosen the decimation approach for multiscale repre-

sentation of an image X.

7.3 Pixel temperature function

To better incorporate the SR process with the MR pre-infused synthetic image, we

introduce our own novel pixel temperature function. With the pixel temperature

function, we can directly define how the MR constraint is imposed on the SR process.

As a consequence of using the pixel temperature function, an equilibrium state

exists which may be used to determine when the SR process at one level may be

terminated to be proceeded by the SR process at the next level. We have also found

that the multiscale relaxation algorithm proposed in this thesis, which incorporates

our novel pixel temperature function, produces synthetic textures with minimal

phase discontinuities [152]. An example of a texture phase discontinuity is shown in

Fig. 7.2.

Figure 7.2: Example of phase discontinuity. There exists a visual separation between
two realizations of the same texture.
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A phase discontinuity occurs when there exists more than one maximum for Π,

be it a local or global maximum. Under relaxation, the value of a pixel in the image

will tend to the maximum of the LCPDF. A set of pixels within a local area of the

image will tend to a maximum given by the joint distribution Π. It is the set of

pixels that exhibit a maximum in Π that determines the global image characteristics

of a texture. The relaxation of the image via the LCPDF only indirectly influences

these global image characteristics. Two different maxima in Π correspond to two

textures with different global image characteristics. Therefore if two different local

areas within the image are propagating different global image characteristics via

the relaxation process, a phase discontinuity will occur at the border between the

two areas as seen in Fig. 7.2. Multiscale relaxation helps reduce the occurrence

of phase discontinuities in synthetic textures. This is because the global image

characteristics that are resolved at the lower resolutions, with long interconnections,

represents phase continuity over larger distances than at higher resolutions.

The aim of our pixel temperature function is to define a “confidence” associated

with a pixel, that its value has been sampled from an unconstrained LCPDF. Total

confidence in a pixel value will occur when it has been sampled from an uncon-

strained LCPDF. Initially in the MR algorithm, the SR algorithm is constrained by

the realisation attained at the previous grid level. Pixels that are from the previous

grid level do not undergo further stochastic relaxation, and therefore can be regarded

as having full “confidence” in their pixel values. New pixels that are introduced at

the current grid level must undergo a complete course of stochastic relaxation, and

therefore must have no “confidence” in their initial pixel values. If the confidence

associated with a pixel is used to constrain the LCPDF so that it is less conditional

on those pixels with lower confidence, then it follows that the LCPDF will only be-

come unconstrained when all its neighbouring pixels have full confidence. Also, the

MRF will not reach an equilibrium state until all LCPDFs are unconstrained, and

this will only occur when all pixels at the current grid level attain full confidence.

Basically an LCPDF should not be fully conditioned on a value until that value

has been sampled from a fully conditioned LCPDF. Note, if the LCPDF was per-

fectly defined, then this would not be necessary, but because we have limited data

and a huge domain for the LCPDF, it is better to control the access to where viable

data exists within the domain of the LCPDF.

Each pixel is given its individual temperature ts, representing the confidence

associated with the pixel xs. The confidence is expressed as (1− ts) for 0 ≤ ts ≤ 1,
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such that ts = 0 represents complete confidence, and ts = 1 none at all. In the

MR algorithm, the confidence or temperature associated with each pixel is used

to modify the dimensionality of the LCPDF. This is done so that the conditional

dependence of the LCPDF is strongest on those pixels with ts → 0, and weakest

for those with ts → 1. The pixel temperature is incorporated into the LCPDF by

modifying the form of (z− Zs) in Eq. (5.12).

Given an image X on which to define the LCPDF, and a training image Y from

which to take the data samples, the estimate of the LCPDF, with respect to a

neighbourhood system N l, is given by Eq. (5.12) as,

P̂ (xs|xr, r ∈ N l
s) =

1

Q(z)

∑

p∈Sl
y,

N l
p⊂S

l
y

exp

[

− 1

2h2
opt

(z− Zp)
T(z− Zp)

]

, (7.18)

where Q(z) is the normalising function, and constant with respect to s,

Q(z) =
∑

λs∈Λ

∑

p∈Sl
y,N

l
p⊂S

l
y

exp

[

− 1

2h2
opt

(z− Zp)
T(z− Zp)

]

. (7.19)

The estimate of the LCPDF is for the image Xl at the site s ∈ S l. The d-dimensional

column vector z = Col[xs, xr, r ∈ N l
s]. The sample data Zp is taken from the image

Y defined on the lattice S ly, where Zp = Col[yp, yq, q ∈ N l
p] for which N l

p ⊂ Sly. The

vector Zp may be redefined with respect to the neighbourhood N l
s defined on the

lattice S l, such that,

Zp = Col[yp, yq, q ∈ N l
p] = Col[yp, yr−s+p, r ∈ N l

s]. (7.20)

The pixel temperature is then incorporated into the LCPDF by modifying the form

of (z− Zp) in Eq. (7.18) to,

(z− Zp) = Col[xs − yp, (xr − yr−s+p)(1− tr), r ∈ N l
s], (7.21)

where the pixel temperature tr is from the same site as the pixel value xr, r ∈ Sl on

the image Xl.

Before the SR algorithm starts at level l, those pixels which were relaxed at

the previous level, l + 1, are given a pixel temperature ts = 0 ∀s ∈ S l+1 i.e.,

complete confidence. The other pixels have their pixel temperatures initialised to
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ts = 1 ∀s 6∈ S l+1 i.e., no confidence. This is illustrated in Fig. 7.3, where those

pixels represented as ‘•’s are given a pixel temperature ts = 0, and the other pixels

represented as ‘◦’s are given a pixel temperature ts = 1, whose pixel values undergo

SR.

ts =

{

0 s ∈ Sl+1

1 otherwise
(7.22)

Figure 7.3: A grid at level l. A • represents a site s ∈ S l+1. A ◦ represents a site
s 6∈ Sl+1 whose pixel is to undergo SR.

If the pixel value at site s ∈ S l were to undergo relaxation and the pixel temper-

ature tr = 1 for a site r ∈ N l
s, then the LCPDF for site s would not be conditional

on that pixel xr. Therefore when tr = 1 the pixel xr has no effect on the LCPDF for

the site s, but as tr ↘ 0 the pixel value xr has an increased effect on the LCPDF

estimate. This has similar connotations to Geman and Geman’s temperature pa-

rameter T [82] for an LCPDF. When T ∼ ∞ the pixel values xr, r ∈ N l
s have no

effect on the LCPDF for a site s, but as T ↘ 0 the pixel values xr, r ∈ N l
s have an

increasing effect.

Geman and Geman [82] defined a temperature parameter T in their Gibbs sam-

pler which was used to control the degree of “peaking” in the LCPDF. The temper-

ature parameter ranged from 0 ≤ T < ∞. For T ∼ ∞ the LCPDF was “flat” and

uniform. For T = 1 the LCPDF was in its normal state, and for T = 0 the LCPDF

was “peaked” at the mode and zero everywhere else. The temperature parameter

was used as part of an annealing algorithm, whereby the temperature started at
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a high value and gradually decreased to one (or zero). This was done in order to

gradually relax the image to its global maximum defined by the joint probability

distribution Π. We can obtain a similar temperature function based on our pixel

temperature function by defining a “local” temperature function Ts such that,

(1− ts) =
1√
Ts
, 0 ≤ Ts <∞, ∀s ∈ S. (7.23)

The local temperature Ts is then like a local version of the temperature parameter

T as defined in [82]. In this way Ts varies from ∞ ↘ 1 to obtain ts varying from

1↘ 0. In any case, the function of our local pixel temperature may be regarded as

an implementation of local annealing in the relaxation process.

Just as the Gibbs sampler requires a cooling schedule to specify the rate at

which the temperature parameter T reduces to zero, so does the local temperature

Ts, s 6∈ Sl+1. As each site has its own local temperature Ts, so too can each site

have its own cooling schedule. This means that the rate at which a pixel is cooled

can be made dependent on its neighbouring temperatures. In high temperature

surroundings a pixel could be cooled fairly rapidly, but in cool surroundings a slower

cooling rate would be advisable.

High temperatures produce images that are not spatially correlated, but as the

temperatures decrease the correlations induced by the LCPDF become more preva-

lent. These spatial correlations represent the image characteristics. It is important

that these characteristics evolve correctly and therefore the LCPDF should not

change too rapidly after each iteration; as the surrounding pixel temperatures drop,

the cooling rate should be slowed.

We relate pixel temperature to pixel confidence, where pixel confidence is asso-

ciated with the probability that xs is the correct pixel value for the site s. Full pixel

confidence occurs when xs is sampled from an LCPDF at equilibrium, or when the

LCPDF is completely conditional on its neighbouring pixel values at sites r ∈ N l
s.

An LCPDF at equilibrium means the pixel temperatures tr = 0, ∀r ∈ N l
s, and there-

fore the estimate of the LCPDF in Eq. (7.18) is not modified by pixel temperature

tr in Eq. (7.21).

The confidence associated with the pixel value xs is then dependent on the pixel

temperatures tr, r ∈ N l
s which are used to modify the respective LCPDF. Therefore,

the following formula has been chosen to describe the confidence associated with

a pixel value, xs, that has been sampled from an LCPDF modified by the pixel



7.3. PIXEL TEMPERATURE FUNCTION 133

temperatures tr, r ∈ N l
s,

ts =

∑

r∈N l
s
tr

|N l
s|

. (7.24)

The expression |N l
s| is the total number of sites in N l

s.

From Eq. (7.24) the pixel temperature ts will only equal zero if tr = 0, ∀r ∈ N l
s.

Therefore ts will only converge to zero but never equal zero. This means with the

cooling schedule in the present form, the SR will not reach a state of equilibrium. The

following modification was used to ensure that the SR reached a state of equilibrium.

ts = max

{

0,
−ξ +

∑

r∈N l
s
tr

|N l
s|

}

. (7.25)

where ξ is a constant such that ξ > 0. We used ξ = 1. When using Eq. (7.25) to

modify the pixel temperature after its site has been relaxed, eventually all ts, s ∈ Sl
will equal zero. Alternatively, if the “local temperature function” is used, as defined

in Eq. (7.23), then a cooling schedule that is related to Geman and Geman’s [82]

cooling schedule for global temperature T could be used.

At some point in the SR process ts = 0 ∀s ∈ S l, then each pixel xs would have

been sampled from an LCPDF at equilibrium. If the cooling schedule of the pixel

temperature was slow enough, then the joint distribution Π(Xl = xl) should also be

at equilibrium. This gives a convenient indicator for when the SR process can be

terminated. Therefore, for our MR process, each grid level l undergoes constrained

SR until ts = 0, ∀s ∈ S l. At which point the constrained SR at level l is terminated

and recommenced at level l − 1 with respect to Xl = xl.

In summary, the multiplication of (1− tr) in Eq. (7.21) represents the confidence

in using site r ∈ N l
s to estimate the LCPDF. Initially only those sites s ∈ S l+1

which have had their values relaxed at the previous level (l+1) are used to estimate

the LCPDF, but as the SR iterations progress other sites gain in confidence. When

ts = 0, ∀s ∈ S l, the SR process could be said to have reached an equilibrium state

and therefore indicate it is time to move on to the next lower grid level (l − 1) to

repeat the SR process.



134 CHAPTER 7. SYNTHESISING TEXTURE

7.4 Site visitation sequence

Site visitation sequence determines which sites are updated and when. The generally

accepted sequence is to visit each site randomly. However there are other methods.

7.4.1 Exchange

It may be desirable to keep the overall distribution of values λ ∈ Λ fixed. One way

is to choose at random a pair of sites s, t ∈ S and use the Metropolis algorithm to

decide whether or not to exchange the values of the corresponding variables. This

was employed by Cross and Jain [50] for texture synthesis.

An alternative by Green [90] was to introduce a penalty to the energy function

U(x), Section 3.3. Fix a vector µ = (µ0, . . . , µL) (the target proportions of each

grey level) and let p(x) = (p0(x), . . . , pL(x)) denote the grey level proportions in X:

pj(x) = 1
N

∑

s∈S 1xs=j. Then the argumented energy is:

Uµ(x) = U(x) + σ2N |p(x)− µ|2

7.4.2 Seeding

This scheme tries to mimic the physical phenomena of crystal growing. The idea is

to start with a random subsample from the local joint probability distribution Πs

and map it randomly to S. This region is called the seed and is defined as A ⊂ S.

The boundary to the seed is denoted as ∂A =

⋃

t∈A
Nt \A. There are then two parts

to the algorithm:

1. procedure for updating the pixels xs, s ∈ ∂A;

2. procedure for growing the seed A, i.e., the criterion for the set A to be redefined

as A + ∂A and ∂A to be redefined as the boundary to this new set.

Consider a site s ∈ ∂A. The neighbouring sites r ∈ Ns may or may not have

their states defined.

xr =











defined, r ∈ A
defined/undefined, r ∈ ∂A
undefined, r ∈ S \ (A ∪ ∂A)
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The problem is that for sites s ∈ ∂A the LCPDF Πs(xs|xr, r ∈ Ns) will be dependent

on undefined values xr, r ∈ Ns. It is only when the site s is contained in A that the

LCPDF is valid with respect to its neighbours. Derin and Elliott [54] recognised this

problem and suggested that the boundary could be increased to ∂A + ∂∂A where

∂∂A was the boundary of A + ∂A. However when the set A was updated, it would

still be redefined as A+ ∂A with the set of pixel values for ∂∂A being discarded.

Another aspect of Derin and Elliott’s [54] algorithm was that they did not relax

each site s ∈ ∂A+∂∂A individually with respect to their LCPDFs, but updated the

sites with respect to the partial joint distribution defined for all the sites ∂A+∂∂A.

However this would be almost computationally impossible for our nonparametric

model.

A possible solution to this seeding problem is the implementation of our own

pixel temperature function. The seed can be defined by a pixel temperature ts =

0, ∀s ∈ A and ts = 1, ∀s 6∈ A. The same local cooling function can be employed as

Eq. (7.25), thereby slowly giving confidence to those pixels xs, s ∈ ∂A. However in

using this scheme directly, the influence of the confidence will extend out from the

seed after each iteration. That is there is a steady progression of ts > 0 for sites

s ∈ S beyond the implied boundary ∂A. This may not be exactly what is sought,

and can in fact defeat the purpose of growing the field from a seed. Basically it may

be preferable to control the spread of the pixel confidence.

The philosophy behind using a seed is to slowly grow it so that the internal

structure of the field may be controlled. If the field is allowed to reach its own

equilibrium during each stage of the seeds growth, then this will minimise phase

discontinuities. This should also help the process find the global minimum of the

whole field. However this all relies on a slow growth of the seed. In our experiments

we found that we had to control the growth beyond that dictated by the propagation

of the pixel temperature function. Therefore we only relaxed those sites within a

certain radius of the seed A. This radius was only allowed to increase when all ts, s ∈
A reached a certain confidence level. However, unfortunately in our experimentation

we were not able to reasonably reduce the amount of phase discontinuities for the

amount of computation involved.
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7.4.3 Parallelised relaxation

In our experiments, we synthesised textures on an SIMD (single instruction, multiple

data) system. With SIMD systems, a single program instruction may be executed

simultaneously on many relatively smaller processors that exist on a parallelised

array. Therefore, although the instructions remain sequential, the data may be

parallelised. For image processing applications, this is very useful as each processor

in the parallelised array may be dedicated to a single pixel in the image. The SIMD

system used was the massively parallel processor system, MasPar r, with 16384

processors. For synthesising texture, a MasPar r gives the ability to update up

to 16384 pixels in one iteration. This is a significant advantage when applying SR

with our nonparametric LCPDF, as the LCPDF has to be derived directly from the

sample data for each iteration, which in itself is computationally intensive.

A relaxation algorithm may be parallelised if the relaxation of a single pixel is

conditionally independent of other pixels undergoing simultaneous relaxation. A set

of sites that may undergo simultaneous relaxation are those sites,

Si.i.d. = {s ∈ S, r 6∈ Si.i.d. ∀r ∈ Ns} . (7.26)

Basically, no two sites that are neighbours should be simultaneously relaxed. If all

sites were simultaneously relaxed, Besag [19] suggests that oscillations in the site

representation may result. In fact, we found simultaneous relaxation of all sites was

detrimental in regard to the Ising model [121].

The set of sites that are allowed to undergo simultaneous relaxation are the same

set of sites required to obtain independent and identically distributed (i.i.d.) data as

specified by Besag’s coding method [17]. The same coding method may therefore be

used to identify each set of sites that may be simultaneously relaxed in one iteration

in a parallelised relaxation algorithm.

7.5 Edge effects

When synthesising textures, there are two different problems caused by edge effects

that need to be addressed in the estimation of the LCPDF. One is the problem of

how to estimate the LCPDF near an edge of the synthetic image. The other, is

the problem of how to incorporate sample data into the estimation process that has
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been taken near an edge of the training image.

The first problem is solved by decreasing the neighbourhood associated with the

pixel of concern, to just those pixels in the neighbourhood that exist in the synthetic

image. Consider a site s ∈ S that has at least one neighbouring site r ∈ Ns for

which r 6∈ S, such that s is an edge site. At these sites the LCPDF cannot be

estimated over the whole neighbourhood Ns. Instead the neighbourhood for these

edge pixels is reduced to be just over those pixels r ∈ Ns for which r ∈ S. This can

easily be done by assigning those pixels r 6∈ S with a pixel temperature tr = 1. The

LCPDF is then estimated via Eq. (7.18) with the vector (z − Zp) replaced by the

vector (z−Zp) of Eq. (7.21). In Eq. (7.21) the pixel values xs, for which s 6∈ S, are

multiplied by zero and therefore can remain undefined.

The other problem is in regard to the edge effect associated with the training

image Y. In Eq. (7.21) the sample data Zp is a column vector from the image Y

representing the pixel yp and the complete set of neighbours yq, q ∈ Np for a site

p ∈ Sy. Previously in Eq. (7.18) the sample data Zp was only obtained from those

sites p ∈ Sy which were not edge sites. However, for images Yl at high grid levels,

the images may be so small that all the sites p ∈ S ly may be required to obtain an

adequate sample distribution. Therefore in order to produce an adequate estimate

of the LCPDF, the sample data from the edge sites may need to be incorporated

into the estimation process. The solution to this problem is a little more complex.

Instead of trying to incorporate lower dimensional sample data into a higher di-

mensional estimation, we keep the neighbourhood size the same for all sample data.

This means that for sample data taken near the edge of the training image Y, pixel

values need to be surmised for those pixels in the neighbourhood but outside the

image. A common approach is to set these pixel values to a common value [164], or

to wrap the image as though it was on a toroidal lattice [116]. Without biasing the

estimation process towards sample data collected from edge pixels, we label those

pixels outside the image yr, r 6∈ Sy with values corresponding to their respective

pixel values in X in the neighbourhood of the pixel for which the LCPDF is being

estimated, plus some fixed offset. This makes the component of (z − Zp) at the

position r 6∈ Sy equal to that offset (unless tr = 1). We use an offset equal to |Λ|,
the number of possible grey levels.
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Algorithm 1: Nonparametric multiscale MRF texture synthesis

Input:

Y ← training texture image.

Ny ×My ← size of training image Y

Nx ×Mx ← size of synthetic image X

o← the order of the neighbourhood system

Begin

1. Define number of grid levels as M ≤ 1 + log
2
(min {Nx, Mx, Ny, My}).

2. Define image X as being on a set of sites S as given by Eq. (7.2).

3. Define the multigrid representation of image X as the set of subset of sites S l ⊆ S for
0 ≤ l < M as given by Eq. (7.3).

4. Similarly, define image Y as being on a set of sites, Sy Eq. (7.2), with a multigrid
representation as the set of subset of sites S l

y ⊆ Sy for 0 ≤ l < M as given by Eq. (7.3).

5. Initialise pixel temperatures ts = 1, ∀s ∈ S.

6. For l = M − 1 to 0 do

6.1. Define neighbourhood N l
s w.r.t. order o as given by Eq. (7.4).

6.2. While ts 6= 0, ∀s ∈ Sl do

6.2.1. choose a set of i.i.d.sites Si.i.d. ⊂ Sl from Eq. (7.26) for which ts > 0.

6.2.2. For all s ∈ Si.i.d. in parallel do

6.2.2.1. Estimate the LCPDF for site s via Eq. (7.18), with (z − Zp)
defined by Eq. (7.21).

6.2.2.2. Choose new xs by sampling its LCPDF, as in the Gibbs Sam-

pler, Fig. 4.5, or choose the new xs via the ICM algorithm,
Fig. 4.6.

6.2.2.3. Update ts via Eq. (7.25).

6.2.3. done

6.3. done

7. done

End

Figure 7.4: Parallel implementation of our nonparametric multiscale MRF texture
synthesis algorithm

7.6 Algorithm

An outline of our multiscale texture synthesis method for reproducing representative

examples of a training texture using the nonparametric MRF model is presented in

Fig. 7.4. Virtually the same algorithm is used for the strong nonparametric MRF

model. The only difference is in how the LCPDF is estimated. The estimation
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of the strong LCPDF is basically the same as for the nonparametric LCPDF, but

instead of making the estimation with respect to a single set of neighbourhood values,

separate estimates need to be compiled for each clique of the neighbourhood. The

simple estimate of the strong LCPDF is then given by Eq. (6.49) as the product of

the estimates obtained for each major clique.

7.6.1 Approximations made in the interest of speed

A faster version of Algorithm 1, Fig. 7.4, can be achieved by approximating the

estimate of the LCPDF for λs ∈ Λ by only using those data samples Zp for which,

yp = λs, p ∈ Sly. (7.27)

This means that instead of obtaining the sample data Zp from all p ∈ S ly, it is only

obtained from those sites p ∈ S ly for which yp = λs. That is, if yp 6= λs ∀p ∈ Sly then

P (Xs = λs|xr, r ∈ Ns) = 0. Therefore the LCPDF is then only sampled over those

pixel values λs ∈ Λ which occur in the image Yl.

A consequence of using this limited sample of Zp for estimating the LCPDF

P (Xs = λs|xr, r ∈ Ns) is that now the variables used to calculate hopt in Eq. (5.11)

have to be updated. The first variable to be updated is σ, where σ2 is the average

marginal variance. But now σ is difficult to calculate. However, since hopt is basically

a guess anyway, there would probably not be any performance improvement if σ was

correctly estimated. Also, it is unlikely that the correct estimate could be achieved

with any great accuracy for the limited amount of sample data available. Therefore

there seems to be no reason to update the original estimate of σ. Another variable

to be updated is n, the number of sample data Zp. This is an important variable

and is easy to calculate for each P (Xs = λs|xr, r ∈ Ns). The other variable is d, the

number of dimensions, which only has to be decremented by one.

In using this modification in Algorithm 1, Fig. 7.4, it was found that the tex-

ture synthesis was not hindered, but seemed to improve. This was attributed to

the estimation of P (Xs = λs|xr, r ∈ Ns) being independent of the estimations for

P (Xs 6= λs|xr, r ∈ Ns). It seems that dependence of P (Xs = λs|xr, r ∈ Ns) on the

sample data Zp for which yp 6= λs might be a problem if the window parameter hopt

over-smoothed the distribution in the Xs dimension. Therefore it is suggested that

no smoothing in the Xs dimension provides a better estimate of the LCPDF than

too much smoothing.
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7.7 Synthesised textures

The textures presented in Figs 7.5 and 7.6 were synthesised with the multiscale

texture synthesis algorithm outlined in Fig. 7.4. In Fig. 7.5 we show the progressive

realisations for the MR algorithm on a Brodatz texture at each grid level. This

shows how the MR algorithm infuses the global to the local characteristics of a

training texture into a synthetic texture. Fig. 7.6 demonstrates the wide range

of textures – from the stochastic to the well structured – that we were able to

synthesise. Best results for the structured textures were obtained with the higher

order neighbourhood N 18. In all cases the training texture images were of size

128 × 128 pixels which we used to estimate the LCPDF. The synthesised images

were of size 256 × 256. In this way, we confirmed that the characteristics of the

training texture had indeed been captured by the model. More results are present

in Appendix B.

The synthesis of the textures was carried out with the images represented by

256 grey levels and neighbourhood systems of order o = 8 and o = 18. This meant

that the LCPDF used to capture the characteristics of the textured training image,

was very sparsely populated with sample data. Even so, the results from the texture

synthesis algorithm show that the characteristics may be replicated over a larger area

and with relatively little distortion by phase discontinuity. Therefore, the multiscale

texture synthesis algorithm, Fig. 7.4, is very robust.

In Appendix B.1 we investigate the effect of varying the neighbourhood size with

which to model the training texture. Figs. B.1–B.166 demonstrate how well the non-

parametric MRF model is able to synthesise various texture types. The lack of phase

discontinuity in the larger synthesised images suggest that the model is capable of

capturing all the texture characteristics of a training texture. These results show

that, although the multiscale texture synthesis algorithm can produce visually simi-

lar realisations of the training texture, there is still the possibility of the model being

overtrained. This is evident when modelling with the larger neighbourhoods, as a

degree of replication is present in the synthesised textures. However, this does give

an indication of the upper bound to the neighbourhood size required for modelling

a specific texture.

In Appendix B.1 we also explore the significance, if any, of choosing either the

Gibbs sampling scheme or the ICM sampling scheme. From the results, Figs. B.1–

B.166, it can be ascertained that on the whole the ICM sampling scheme performs
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.5: Multiscale texture synthesis of Brodatz D22 (reptile skin) with neigh-
bourhood order o = 8. (a) Original textured image; (b) Level 7; (c) Level 6; (d)
Level 5; (e) Level 4; (f) Level 3; (g) Level 2; (h) Level 1; (i) Level 0.

marginally better than the Gibbs sampling scheme, especially at small neighbour-

hood sizes. What can be deciphered from such an observational result is that the

LCPDF is noisy. While the ICM algorithm samples from the mode of the distribu-

tion, the Gibbs algorithm samples from the whole distribution. Therefore, although

the modes of our LCPDF seem to be fairly well estimated, the rest of the distri-

bution does not fit the texture as well. This is to be expected when there is not
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(a) (a.1) (a.2)

(b) (b.1) (b.2)

(c) (c.1) (c.2)

(d) (d.1) (d.2)

Figure 7.6: Brodatz textures: (a) D1 - aluminium wire mesh; (b) D15 - straw; (c)
D20 - magnified French canvas; (d) D103 - loose burlap; (?.1) synthesised textures -
using neighbourhood order o = 8; (?.2) synthesised textures - using neighbourhood
order o = 18.
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(a) (a.1) (a.2)

(b) (b.1) (b.2)

(c) (c.1) (c.2)

Figure 7.7: Brodatz textures: (a) D21 - French canvas; (b) D22 - Reptile skin;
(c) D77 - Cotton canvas; (?.1) synthesised textures - Nonparametric MRF with
neighbourhood order o = 8; (?.2) synthesised textures - strong nonparametric MRF
with neighbourhood order o = 8 and only 3rd order cliques.

enough data to properly estimate an entire distribution. The reason why the Gibbs

algorithm performs better with increasing neighbourhood size, is therefore due to

the LCPDF becoming more modish.

One facet that comes out from the experimental comparison between the Gibbs

and ICM sampling schemes is an idea of how the LCPDF could be most effectively
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used for classification. Obviously, if it are the modes of the LCPDF that are the

most reliable, then it are the modes which should form the basis of the classification

algorithm. This concept will be further explored in Chapter 8.

In our multiscale texture synthesis algorithm, as outlined in Fig. 7.4, one of

the variables is the multigrid height. In the presented algorithm we have set the

variable to the maximum height possible. This however, is a default setting and

is not a requirement. In Appendix B.2 we explore the possibility of synthesising

various training textures with different settings of the multigrid height.

The setting of the multigrid height is equivalent to limiting the extent to which

neighbouring pixels effect the LCPDF. The higher up the multigrid the height is set,

the further away the pixels can be to still have a direct influence on the LCPDF.

Under the MRF premise, we would like to show that textures can be represented by

MRF models that have limited spatial extent, whereby all long rang correlations are

derived from field interactions rather than by direct neighbourhood control. There-

fore the lower the multigrid height can be set the better. The maximum multigrid

height is also another parameter that can be set in the open-ended classification

algorithm. In the interest of obtaining an “ideal” model for open-ended classifica-

tion, we want to model just enough information to represent the texture. Therefore,

this is another reason why we would want to seek the minimum multigrid height

required to model a texture. The synthesis results, Figs. B.167–B.175, indicate that

it is possible to limit the multigrid to just a couple of levels.

The results obtained for strong MRF model, Figs. 7.7 (a.2) (b.2) and (c.2), sug-

gest that these textures may be successfully modelled with just third order statistics.

Although the plain nonparametric MRF model clearly outperforms the strong MRF

model in synthesising texture, as seen in Fig. 7.7 and Appendix B.3, the results

do show that the strong MRF model is capable of capturing the characteristics of

a training texture. It is the strong MRF model that will probably be the more

successful for open-ended texture classification. This is because it uses lower order

statistics, thereby increasing its entropy while retaining the unique characteristics

of the texture [211]. Another advantage of the strong MRF model is that we can

search for the maximum statistical order required to model a texture. This gives

us an upper bound on the order of the significant statistical information contained

within the texture. In Appendix B.3 we also look at reducing the number of cliques

used in the strong MRF model through a process of entropy discrimination.

To perform open-ended classification, the ideal texture model should capture
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enough information to be able to synthesise representative examples of the training

texture. However the texture model should not be overtrained, otherwise the model

will not be representative of other like texture in the texture class. To obtain the

correct model, the minimum neighbourhood size should be chosen that allows ade-

quate synthesise of the training texture. The model can then be further generalised

by reducing the statistical order of the model through correct choice of cliques in

the strong MRF model. Again the cliques should be chosen so as to allow adequate

reproduction of the training texture. It is hoped that in a practical application

neighbourhood size and clique sets could be predefined. That is, texture classes in

a certain application may all be modelled from the one model structure. This quite

possibly could be the case with terrain recognition in SAR images.

In trying to determine the optimal neighbourhood size for a training texture,

an unusual observation was made. The minimum neighbourhood size required to

synthesise a subjectively similar texture to a training texture did not seem to be

dependent on the original resolution of the training texture. Rather, it seemed to

be more dependent on the relative periodic nature of detail in the training texture.

Textures that had fine detail periodically spaced at relatively large distances seemed

to require relatively larger neighbourhoods (e.g., Fig. 7.6(a)), whereas textures with

large detail periodically spaced at relatively small distances (e.g., Fig. 7.5(a)) re-

quired relatively smaller neighbourhoods. It was evident in Fig. 7.5 that the periodic

nature of the detail became more pronounced at higher grid levels (lower resolutions),

but the detail itself started to disappear. In fact there was an optimal resolution for

the texture where the detail was evident as well as the periodic nature of that de-

tail. It was this resolution that strongly dictated the optimal neighbourhood size (a

neighbourhood size that was independent of the original resolution of the texture).
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Chapter 8

Classifying Texture

This chapter outlines the common method for supervised classification. Because

of the problems we see for supervised texture classification in the area of terrain

recognition for SAR images, we introduce our own method of terrain recognition

that uses an open-ended texture classifier. While supervised classification is based

on a closed N class classifier that requires all textures class to be predefined in a set

of training textures, the open-ended classifier requires just one training texture to

be used to distinguish a texture class from all other unknown textures. From the

results of this chapter we have published another three papers demonstrating the

use of the open-ended texture classifier and in particular the advantage of the added

functionality of the strong nonparametric MRF model [104, 155, 158].

8.1 Introduction

MRF models have mainly been used for supervised segmentation and/or classi-

fication, where the number and/or types of texture classes present are a prior

known [34, 38, 40, 54, 81]. Under the assumption that all texture classes present in

the image are contained within the training data, segmentation and classification is

performed by finding the Maximum a posterior (MAP) estimate [81] or the Maxi-

mum Posterior Marginal (MPM) estimate [38]. In each case, whether the MAP or

the MPM estimate is used, each pixel in the image is assigned a label, identifying it

with a training texture class. The MAP estimate assigns these labels so as to limit

the error (or maximise the likelihood) over the whole image (i.e., it uses the associ-

ated joint distribution Π). The MPM estimate limits the error per pixel (i.e., it uses

147
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the LCPDF). Both use Markov models as texture measures to define a likelihood

that a segment of texture is similar to a training texture. These texture measures

need not be complete, they just need to be able to discriminate one training texture

class from another. Therefore supervised classification is only applicable for discrim-

inating the different training texture classes from an image. This is a hindrance for

classifying Earth terrain types from SAR images, as there are a myriad of different

terrain types (i.e., textures), too many to build a library of training textures so that

supervised classification may be performed on an arbitrary SAR image.

One approach around the problem stated above, is to build the texture models

directly from the image to be segmented [106, 117, 138, 157]. The basic concept

is to make an initial segmentation using a prior set of texture models, then to

improve these models by training them on their own segmented areas. The image is

repeatedly segmented, while successively improving the models after each iteration.

This process continues until a steady state is reached. This process is sometimes

referred to as unsupervised classification [117, 168], but a better term would be

unsupervised segmentation. This is because only arbitrary labels are given to the

homogeneous textured regions in the image scene.

We present a new approach to this classification problem, one that uses our

multiscale nonparametric MRF model. The proposed solution is to just model one

training texture, but well enough so that the captured texture characteristics can

be used in an open-ended classifier. With a conventional N class classifier [60] the

feature space is subdivided into N distinct domains or classes. The N class classifier

uses the class boundaries to classify data into known classes. The advantage of

using an open-ended classifier is that it has a default domain called “unknown”, or

“uncommitted,” as illustrated in Fig. 8.1. The open-ended classifier uses an ideal

model to determine the probability distribution for each class over the whole feature

space. New data is then classified as being from the class with the highest likelihood

according to the data specific features. However if this likelihood is low, then the

data can be classified as being from an “unknown” class. The open-ended classifier

is therefore “open” to data outside the known training classes.

The open-ended classifier is based on the assumption that the feature space is

complete, in that any new training data of a separate class would occupy its own

distinct region in this feature space. The classifier is also based on the assumption

that the training data for each class can be represented by an ideal model, so that not

only does each model fully characterise the training data, but the model may be used



8.1. INTRODUCTION 149

Feature A

F
e
a
t
u
r
e
 
B

Feature A
F
e
a
t
u
r
e
 
B

Uncommitted

(a) Conventional N class classifier (b) Open-ended classifier

Figure 8.1: Opened and closed classifiers: (a) The conventional N class classifier
is a closed classifier since further input of training data would require a complete
reconfiguration of the designated classes. (b) Open-ended classifier is open-ended
because further input of training data would not destroy the overall configuration
of the designated classes, but would instead enhance individual classes.

to give a precise likelihood that any new data is of the same class. Classification

is not based on constructing class boundaries to describe the inter-relationships

between classes, instead classification is based on an ideal model defining the intra-

relationships of the training data for a class.

We have shown that we can model just about any arbitrary homogeneous texture

via our nonparametric MRF model, such that the most likely texture synthesised

from the model is one that is highly representative to the training texture, see

Appendix B.1. Therefore we maintain that these models are ideal and the feature

space on which they are based is complete. Given any set of these ideal models it is

then possible to use the open-ended classifier for texture recognition.

Unlike a conventional N class classifier, an open-ended classifier does not possess

defined boundaries between classes. Instead an open-ended classifier defines the

probability of an image segment being of a modelled texture. This means instead

of an image segment being labelled as a particular texture, it is given a probability

for being that texture. If the open-ended classifier contains a set of ideal texture

models, then the image segment is given a set of probabilities, one for each training
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texture. Greenspan et al. [91] also used a probability map over an image to show

the degree of similarity of texture to a training texture, but that was done through

the use of a neural net performing supervised classification.

The open-ended classifier permits segmentation and classification of images with

an unknown number and variety of texture classes. However in order to construct

such a classifier we need to find some meaningful way of extracting the information

required from the ideal models to perform the necessary classification.

8.2 Bayesian paradigm

First we look at a standard approach for classifying texture from an image. Geman

and Graffigne [81] use the Bayesian paradigm to segment and classify texture via

supervised classification. In this approach, the texture classification is based on

two models; one modelling the interaction between the pixel labels, and the other

modelling the pixels themselves. Following the notation of Geman and Graffigne [81],

the image to be segmented and classified is denoted as X = x and resides on the

lattice S = {s1, s2, . . . , sN}. The label image is denoted as XL = xL and resides on

the same lattice as X. For each pixel variable there is a corresponding label variable.

The classification is then made on the basis of maximising the combined probability

via the Bayes’ rule whereby,

P (xL|x) =
P (x|xL)P (xL)

P (x)
, (8.1)

In Geman and Graffigne’s [81] interpretation of the label image, XL, each variable

{XL
s , s ∈ S} may be assigned a discrete label xLs ∈ ΛL, where ΛL represents the

discrete set of possible texture labels. In our case we wish to label a particular pixel

with the probability that it is of the same texture class as the pre-modelled training

texture. Therefore ΛL no longer represents a discrete set of labels, but instead is a

continuous set of real numbers bounded by zero and one.

The aim of the segmentation classification procedure is to find the image xL that

maximises the probability P (xL|x). From Eq. (8.1), this probability is maximised

by maximising both P (x|xL) and P (xL). The probability P (x) represents the prob-

ability of obtaining x. As we are only concerned with the one x, the probability

P (x) may be ignored. The probability P (xL) includes factors relating to how the
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pixels of the same (or in our case, similar) labels cluster together. One would expect

that a pixel will have the same or similar labels as its neighbours. It is usual to

define P (xL) with respect to the Ising model, Section 4.2.1,

P (xL) =
1

ZL
exp







β
∑

C={s,r}∈C

1xL
s =xL

r







, (8.2)

where, the greater the β, the more likely the neighbouring pixels will be of the same

label. In our model, we will ignore this clustering effect and use β = 0. For each

pixel, we will individually determine the probability that it is of the pre-modelled

training texture. In a more sophisticated version of our classification algorithm, one

would use the reasonable assumption that pixels close to each other would exhibit

similar probabilities of classification. It may also be prudent to incorporate boundary

detection as part of a constrained optimisation of the probability map as discussed

in [80]. However these types of improvements to the general algorithm are more

application driven, and so therefore we will limit ourselves to outlining the simple

version of our classification algorithm, and discussing its own particular merits.

This leaves just the probability P (x|xL) from which to derive a classification

algorithm. If the whole image is of the one texture and X is an MRF, then,

P (x|xL) = Π(x). (8.3)

That is P (x|xL) equals the joint probability Π(x) as uniquely determined by the

LCPDFs P (xs|xr, r ∈ Ns) s ∈ S. For cases when x is not all of the one texture,

Geman and Graffigne [81] classified small areas of the image assuming they were

homogeneous. The classification was made on the basis that the product of the

neighbourhood probabilities over the area of concern resembled the joint probability

for that area, i.e., ,

Π(xr, r ∈ Ws) '
∏

r∈Ws

Pr(xr, xt, t ∈ Nr), (8.4)

where Ws is the window of sites, centred at s, which are to be used for the classifi-

cation of xs. Note that the probability Pr(xr, xt, t ∈ Nr) in Eq. (8.4) is not derived

from the LCPDF, but rather the local probability density function (LPDF). The

LPDF may be calculated from the nonparametric approximation of the LCPDF,

Eq. (5.12), but with the normalising function omitted.
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It is common to use a large window Ws for segmentation and classification.

Geman and Graffigne [81] used a 5× 5 window for an MRF modelled with respect

to the nearest neighbour neighbourhood N 1. Chellappa et al. [38] also used a

large window from which to determine the classification of a pixel. An intuitive

explanation as to why a window for segmentation/classification should be large, is

found in the representation of Π by the LPDF. It is the joint distribution Π(x)

that will determine the probability that x is of a pre-modelled training texture. A

window of one pixel will realise only one sample of the LCPDF by which to test

the distribution. Therefore a large window is used to obtain a reasonable sample of

LPDF realisations.

In order for the Bayesian classifier of Eq. (8.4) to be successful, all probabilities

derived from the LPDF need to be well defined. This means that the estimate

of the LPDF needs to be representative of the texture class over its whole domain,

otherwise errors will creep into the classification algorithm, and under Eq. (8.4) these

will have a multiplicative effect. This is exactly what we found in our preliminary

experimentation. When dealing with large dimensional LPDFs, we were not able to

accurately estimate the LPDF well enough to avoid contaminating the classification

algorithm with a debilitating amount of noise in Eq. (8.4). Even alternative choices

of hopt were not able to rectify the problem.

8.3 Open-ended classification

We found the probability Π(xr, r ∈ Ws) as defined by Eq. (8.4) to be unwieldy.

This was because our nonparametric LPDF tended to give low probabilities for

the neighbourhood configurations in the classification window, which resulted in

Π(xr, r ∈ Ws) being too susceptible to minor fluctuations from inaccurate estimates

of the LPDF. Instead of trying to combat the inherent inaccuracies of the estimate

of an LPDF over a large neighbourhood, we take an alternative approach of incor-

porating the uncertainty of the estimate into the classification scheme. We know we

have captured the complete characteristics of the texture in the LPDF, we just need

a better way of extracting that information out of the LPDF to perform texture clas-

sification. In our approach, we take the set of probabilities, as defined by the LPDF

for the window Ws, and compared them directly to a set of probabilities obtained

from the training texture. We use a hypothesis test to determine whether these two

sets of probabilities come from the same population. This therefore side steps the
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issue of trying to find a better estimate of the LPDF and partially indemnifies the

classification procedure against minor fluctuations in the LPDF.

8.3.1 Probability measurement

The probability Pr(xr, xt, t ∈ Nr) is calculated from Eq. (5.12) with the normalising

function omitted.

Pr(xr, xt, t ∈ Nr) =
1

nhd(2π)d/2

∑

p∈Sy,
Np⊂Sy

exp

[

− 1

2h2
opt

(z− Zp)
T(z− Zp)

]

. (8.5)

As defined previously, z = Col[xr, xt, t ∈ Nr] and Zp are similar samples taken from

the training image Y defined on the lattice Sy. The constant 1
nhd(2π)d/2 is applied so

that Pr(xr, xt, t ∈ Nr) remains a true probability, Section 5.3.

For the strong nonparametric MRF, we use the simple estimate of Eq. (6.49)

giving,

Pr(xr, xt, t ∈ Nr) =
∏

C∈Cr ,
C 6⊂C′∈Cr

Pr(xr, xt, t ∈ C), (8.6)

where each Pr(xr, xt, t ∈ C) is calculated in a similar fashion to Pr(xr, xt, t ∈ Nr)
in Eq. (8.5), except the calculation is based on the clique C rather than the neigh-

bourhood Nr, Section 6.6.

The samples of the LPDF, taken from the window Ws ⊂ S, are the set of

probabilities {Pr(xr, xt, t ∈ Nr), r ∈ Ws}. Instead of multiplying these probabilities

together, as in Eq. (8.4), we will compare them directly to the set of probabilities

obtainable from the training image Y. For every site q ∈ Sy, Nq ⊂ Sy in the training

image, it is possible to obtain a vector,

z = Col[yq, yt, t ∈ Nq], q ∈ Sy, Nq ⊂ Sy, (8.7)

for which Pq(yq, yt, t ∈ Nq) may be calculated. This may be done via Eq. (8.5)

with the sample vectors Zp also coming from the training image Y. However, this

probability estimate would be biased since the sample vector Zp = z would also be

included in the estimation. This bias is removed by excluding the site p = q from

the calculation of Pq(yq, yt, t ∈ Nq). The set of probabilities {Pq(yq, yt, t ∈ Nq), q ∈
Sy,Nq ⊂ Sy} from the training image Y, is therefore calculated using the modified
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formula of Eq. (8.5), giving,

Pq(xq, xt, t ∈ Nq) =
1

nhd(2π)d/2

∑

p∈Sy−q,
Np⊂Sy

exp

[

− 1

2h2
opt

(z− Zp)
T(z− Zp)

]

. (8.8)

Given the set of probabilities {Pr(xr, xt, t ∈ Nr), r ∈ Ws} from the window to be

classified, and the set of probabilities {Pq(yq, yt, t ∈ Nq), q ∈ Sy,Nq ⊂ Sy} from the

training image, we are now able to determine the recognition probability. The null

hypothesis is that the distribution of probabilities from the window is the same as

the distribution from the training image. We use the nonparametric Kruskal-Wallis

test [128] to test this hypothesis.

The Kruskal-Wallis test is the nonparametric version of the F test [128]. We use

the Kruskal-Wallis test to make inferences about treatment populations, accepting or

rejecting the null hypothesis that the populations come from the same distribution,

primarily by comparing the means. The Kruskal-Wallis statistic K is calculated in

terms of the ranks of the observations rather than their nominal values.

Given c populations, each with nj observations, combine them to form one set of

nT observations, where nT =
∑c

j=1 nj. Then rank these observations from smallest

to largest value. The smallest valued observation is given a rank of 1, and the largest

a rank of nT . If more than one observation has the same value, then they are ranked

arbitrarily and then given the same rank equal to the mean of their ranks. With this

set of ranked observations, define Tj as the sum of the ranks for each population.

Then the Kruskal-Wallis statistic K is expressed as,

K =
12

nT (nT + 1)

c
∑

j=1

(

T 2
j

nj

)

− 3(nT + 1), (8.9)

The sampling distribution of K is approximately chi-squared with c− 1 degrees

of freedom. For two populations, the Kruskal-Wallis statistic K is equivalent to

the square of the normalised Wilcoxon statistic [97, 128]. Given K, the accepted

practice is to accept or reject the null hypothesis if K is greater than a particular

confidence level α. Our approach is to instead calculate the confidence associated

with accepting the null hypothesis and use that as a goodness-of-fit.

As we are just testing two populations – one a set of probabilities from the

window to be classified, the other a set of probabilities from the training image
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– then K is chi-squared distributed with one degree of freedom. The confidence

associated with accepting the null hypothesis is equal to the area under the chi-

squared distribution for values greater than K. This confidence, for a particular

window Ws, will be denoted as PWs and refer to the probability,

PWs = P (k ≥ K), (8.10)

where K is calculated from Eq. (8.9) and k is chi-squared distributed with one degree

of freedom. It is this confidence (or goodness-of-fit), PWs, with which we plot our

probability map, such that,

XL
s = PWs. (8.11)

The convenience of this approach is the fact that Numerical Recipes [167] provides

an efficient algorithm for calculating the area under a chi-squared distribution.

8.3.2 Multiscale probability measurement

There are various approaches for defining a multiscale probability measurement

for classification. Krishnamachari and Chellappa [125] defined separate probability

measurements for each grid level. At the top most grid level (i.e., lowest reso-

lution) they classified the image by using the ICM algorithm with respect to the

corresponding probability measurement. This classified image was then propagated

down a grid level where it was used as an initial classification for the implementation

of again the ICM algorithm with respect to the next probability measurement. This

was continued down the grid levels to the bottom grid level or highest resolution.

Bouman and Liu [26] defined a likelihood function that was dependent on a

proposed classification of the lower grid level or higher resolution. They then used

this likelihood function to obtain the maximum likelihood estimate at the top most

grid level. This estimate or classified image was then propagated down to the next

grid level where the ICM algorithm was used to obtain the maximum likelihood

estimate at that level. This was continued down the grid levels to the bottom grid

level or highest resolution. This algorithm was later improved upon by Bouman

and Shapiro [27] whereby the likelihood function was updated with respect to the

current classification.

Then there is the approach by De Bonet and Viola [24], who defined a probability

measurement that transcended across all scales. This allowed them to classify the
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pixels with respect to all multiscale features as one joint probability measurement.

Unfortunately none of these approaches are appropriate for our probability mea-

surement. This is because we use the Kruskal-Wallis probability, Eq. (8.10), to

classify a pixel in a test image. This probability does not require an iteration pro-

cess like the ICM algorithm, nor is it dependent on the classification of pixels at other

grid levels. It would in fact be very difficult to incorporate dependence between grid

levels as the Kruskal-Wallis probability, Eq. (8.10), is a statistic comparing whether

sets of samples are from the one population. A set of samples from each grid level

would constitute separate and distinct populations. Therefore it is more convenient

to calculate the Kruskal-Wallis probability for each grid level as a separate image

and to regard these probabilities as unrelated.

The classification of the site s ∈ S with the combined Kruskal-Wallis probabilities

may now be explicitly expressed as,

XL
s=(i,j) =

∏

l≥0

P l
Wr
, r =

(

i

2l
,
j

2l

)

∈ Sl, (8.12)

where the probability map is given as XL = {XL
s , s ∈ S}.

8.4 Boundaries and edges

Classification of a window that overlaps an edge of the image or a window that

overlaps a boundary between two or more textures is an open problem. However

there are segmentation methods for finding texture boundaries [79, 80, 204]. Here

we present our own ad hoc approach to solving this boundary and edge problem.

First lets consider the classification of a site s ∈ S whose window Ws centred at

s is not wholly contained in S. That is, the window Ws overlaps the edge of the

image. Previously we have designated the centre site of the window as the one to

be labelled with the classification probability obtained for the window. However,

this was only chosen for the reason that it was the most logical choice. In fact the

Kruskal-Wallis probability, PWs, obtained for the window, Ws, is the probability

that the patch covered by the window, Ws, is of the same texture as in the training

texture. Therefore we may label any site within the window, Ws, with the Kruskal-

Wallis probability PWs. For solving the edge problem, this means we may use an

alternative window Wr that is wholly contained within S for which s ∈ Wr ⊂ S. An
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example of an alternate window, Wr, for an edge site s is shown in Fig. 8.2.

s

Ws S

=⇒ s

Wr S

r

Figure 8.2: The modification of the window position for an edge site

The second problem, is the problem of a window overlapping a boundary between

two or more textures. This is not so much a problem when the textures involved

are not of the training texture, as a low Kruskal-Wallis probability will be obtained

anyway. However, if the site being classified is on the boundary of a similar texture

to the training texture, and its classification window encompasses other textures,

then the Kruskal-Wallis probability will again be low. This means that the proba-

bility map will tend to show “boundary erosion” around textures that are deemed

similar to the training image. To overcome this problem with the presentation of

the probability map, we introduce our own ad hoc method for reducing the erosion

around textural boundaries.

As with the edge problem, when a window overlapped the edge of a image, we

may solve the boundary problem by choosing an alternate window Wr. Given a

site s on the boundary of texture, we wish to choose a window Wr for s that is

completely encompassed by that texture. Thereby maximising the probability that

the boundary site will be classified along with the other sites of the texture. An

example of such an alternate window, Wr, is shown in Fig. 8.3.

Ws S

s
=⇒

Wr S

s
r

Figure 8.3: The modification of the window position for a boundary site
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Even though the best alternate window is dependent on the unknown textu-

ral boundaries, it is still possible to choose a window, Wr, that gives the optimal

probability of classification for the site s ∈ S, as,

Woptimal = arg max
r∈Ws

PWr (8.13)

This is tantamount to labelling XL
s with,

XL
s = max

r∈Ws

PWr (8.14)

From experiments, this ad hoc approach produced probability maps with reduced

boundary erosion, giving sharp clean borders between similar and dissimilar textures

with respect to a training texture.

8.5 Algorithm

In the open-ended texture classification algorithm, Fig. 8.4, the multiscale approach

used is not same as the Gidas [86] approach used in the multiscale synthesis algo-

rithm, Fig. 7.4. Basically we do not constrain the classification at one grid level

with respect to the classification from the higher grid level. Instead we label the

site s with the combined Kruskal-Wallis probability under the assumption that the

probabilities obtained at each grid level are independent.

Since the Gidas [86] constraint is no longer used, there is now no advantage in

using local decimation for the multigrid representation. In fact there is a distinct

disadvantage of using local decimation. As local decimation subsamples the image

at grid l by four, this means that are four possibilities for the image at grid l + 1.

To be thorough, each image should be used. On the other hand, if local averaging

is used, then is one distinct multigrid representation.

As with the synthesis algorithm, given an N ×M image, X, we will define the

rectangular lattice on which to represent the image, X, at grid level l = 0 as,

S = {s = (i, j) : 0 ≤ i < N, 0 ≤ j < M} . (8.15)

However, unlike the multigrid representation of the image, X, in the synthesis al-

gorithm, we will base the multigrid representation on local averaging rather than
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Algorithm 2: Nonparametric multiscale MRF open-ended texture classification

Input:

X← the input image

Y ← the training image

Nx ×Mx ← size of input image X

Ny ×My ← size of training image Y

o← the order of the neighbourhood system

Ws ← classification window

Begin

1. Define number of grid levels as M ≤ 1 + log
2
(min {Nx, Mx, Ny, My}).

2. Define probability map XL and image X as being on a set of sites S as given by Eq. (8.15).

3. Define the multigrid representation of the image, X, as the set of images, Xl Eq. (8.17),
defined on respective lattices, Sl Eq. (8.16), for each grid level 0 ≤ l < M .

4. Similarly, define image Y as being on a set of sites, Sy Eq. (8.15), with a multigrid
representation as the set of images, Yl Eq. (8.17), defined on respective lattices, S l

y

Eq. (8.16), for each grid level 0 ≤ l < M .

5. Define neighbourhood N w.r.t. order o via Eq. (3.9).

6. Initialise probability map to XL = {XL
s = 1, s ∈ S}.

7. For l = M − 1 to 0 do

7.1. Obtain the set of LPDF samples {P l
q(y

l
q, y

l
t, t ∈ Nq), q ∈ Sl

y,Nq ⊂ Sl
y} from the

training image Yl via Eq. (8.8).

7.2. For all s ∈ Sl in parallel do

7.2.1. Calculate P l
s(x

l
s, x

l
r, r ∈ Ns) via Eq. (8.5) or Eq. (8.18).

7.2.2. Calculate the Kruskal-Wallis Probability P l
Ws

from Eq. (8.10) via
Eq. (8.9).

7.2.3. Correct edge and boundary effects by equating
P l

Ws

= maxr∈Ws
P l

Wr

, Wr ⊂ Sl.

7.2.4. Label all XL
r = xL

r × P l
Ws

, for which r = (p, q) ∈ S, s = (p/2l, q/2l).

7.3. done

8. done

End

Figure 8.4: Parallel implementation of our nonparametric multiscale MRF open-
ended texture classification algorithm.

decimation for the open-ended texture classification algorithm. The multigrid rep-

resentation of the image, X, is then denoted as the set of images, Xl, defined on
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respective lattices S l, for each grid level l ≥ 0, for which,

Sl =

{

s = (i, j) : 0 ≤ i <
Nx

2l
, 0 ≤ j <

Mx

2l

}

, (8.16)

and the image Xl is defined with respect to the image Xl−1 as,

Xl =

{

X l
s =

xl−1
2i,2j + xl−1

2i+1,2j + xl−1
2i,2j+1 + xl−1

2i+1,2j+1

4
, s = (i, j) ∈ S l

}

(8.17)

8.5.1 Approximations made in the interest of speed

In the open-ended texture classification algorithm, Fig. 8.4, we require a set of LPDF

samples from the training image and a set of LPDF samples from the test image.

However since the texture classification is based on the similarity of the two sample

populations with respect to the Kruskal-Wallis statistic Eq. (8.9), the samples need

only reflect the underlying LPDF. Therefore we may substitute the LPDF samples

with samples that have a relatively similar distribution.

As the LPDF is derived from a summation of Gaussian curves, Eq. (8.5), this

summation may be approximated by the one Gaussian curve that is most significant.

This is the Gaussian curve that is derived from the sample data Zp = Col[yp, yq, q ∈
Np], p ∈ Sy closest to the test vector z = Col[xr, xt, t ∈ Nr]. In fact, as we only

need a relative LPDF distribution, we do not actually need the Gaussian curve, but

may instead just use the nominal value ‖z−Zp‖ from this most significant Gaussian

curve. That is, instead of using a distribution of LPDF samples, we use a reflection

of this distribution, a distribution of minimum distances.

P ∗
r (xr, xt, t ∈ Nr) = min

p∈Sy,Np⊂Sy

‖z− Zp‖. (8.18)

The convenience is that such a distribution is a lot quicker to calculate than one

that requires an exponential to be continually called.

8.6 Open-ended classification of textures

To demonstrate the performance of our open-ended texture classification algorithm,

Fig. 8.4, we tested it on images containing a mosaic of sub-images with similar

grey levels (see Fig. 8.5(a) (b) and Fig. 8.6(a) (b)). A conventional application of
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(a) (b)

( .1) (a.1) (b.1)

( .2) (a.2) (b.2)

( .3) (a.3) (b.3)

Probability scale 0 1

Figure 8.5: Probability maps of Brodatz texture mosaics (a) and (b) with respect
to: ( .1) D3 - Reptile skin; ( .2) D15 - Straw; ( .3) D57 - Handmade paper.
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(a) (b)

( .1) (a.1) (b.1)

( .2) (a.2) (b.2)

( .3) (a.3) (b.3)

Probability scale 0 1

Figure 8.6: Probability maps of Brodatz texture mosaics (a) and (b) with respect
to: ( .1) D17 - Herringbone weave; ( .2) D84 - Raffia; ( .3) D29 - Beach sand.
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a (first order) histogram technique would not be able to segment these. Also a

mix of structured and stochastic sub images were chosen to illustrate how our non

parametric technique is able to recognise all types of textures, and not limited to

the stochastic textures as suggested by Greenspan et al. [91] for parametric MRF

models.

The results of the open-ended texture classification algorithm are shown as proba-

bility maps representing the goodness-of-fit of a texture model to each region around

each pixel, Figs. 8.5 and 8.6. These maps are displayed as grey scale images, with

white (grey level 255) designating a probability of one, and black (grey level 0)

designating zero probability. However, in the probability maps of Figs. 8.5 and 8.6

there is a distinct absence of varying grey levels. This was caused by a “sharp”

goodness-of-fit function in combination with, the dilation function used for edges

and boundaries, and Eq. (8.12) which multiplied together the resultant maps from

each grid level. In our experiments it was found that the goodness-of-fit probability

map at the first grid level contained a range of grey levels, but these were gradually

“polarised” as each new probability map was multiplied to it.

The probability maps were each created with respect to just one training texture.

For each image, Figs. 8.5(a) (b) and Figs. 8.6(a) (b), three probability maps were

created. Figs. 8.5(a.1) (a.2) and (a.3) are the probability maps of Fig. 8.5(a), one

for each training texture, Figs. 8.5( .1) ( .2) and ( .3), respectively. Similarly, the

same training textures were used to create the respective probability maps for image,

Fig. 8.5(b), as shown in Figs. 8.5(b.1) (b.2) and (b.3). The training textures shown

in Figs. 8.5 and 8.6 are the same texture samples used in the top and centre of

Fig. 8.5(a) and Fig. 8.6(a), respectively. The rest of the samples used in the texture

mosaics of Figs. 8.5 and 8.6 are different texture samples.

The probability maps of Figs. 8.5 and 8.6, show that with the appropriate texture

model it is possible to segment and recognise windows of texture with respect to just

one training texture and without prior knowledge of the other types of textures in the

image. To identify the optimal model, for which to segment and recognise windows

of texture, we tested various configurations of the model on a set of 100 VisTex

texture mosaics courtesy of Computer Vision Group at the University Bonn [49], and

Vision Texture Archive of the MIT Media Lab [203]. The results of this experiment

are highlighted in Table 8.1. From this table the optimal model, with an 87%

classification accuracy, was the strong MRF model with a 3 × 3 neighbourhood,

pairwise cliques and a maximum grid level of one. Some of the probability maps
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Table 8.1: Percentage error for open-ended texture classification of 100 VisTex tex-
ture mosaics = percentage area of false negatives + percentage area of false posi-
tives. VisTex Texture mosaics courtesy of Computer Vision Group at the University
Bonn [49], and Vision Texture Archive of the MIT Media Lab [203]

Neighbourhood Size Clique Size Multigrid Height Percentage Error Rank

3× 3 2 0 15.67 6
3× 3 2 1 12.94 1
3× 3 2 2 13.85 3
3× 3 2 3 18.33 8
3× 3 3 0 23.70 18
3× 3 3 1 18.58 10
3× 3 3 2 17.62 7
3× 3 3 3 21.80 17
3× 3 - 0 24.04 20
3× 3 - 1 19.45 12
3× 3 - 2 18.40 9
3× 3 - 3 21.79 16
5× 5 2 0 14.69 4
5× 5 2 1 13.48 2
5× 5 2 2 15.22 5
5× 5 2 3 21.55 15
5× 5 3 0 21.45 14
5× 5 3 1 18.74 11
5× 5 3 2 19.46 13
5× 5 3 3 25.48 22
5× 5 - 0 25.54 23
5× 5 - 1 24.38 21
5× 5 - 2 23.98 19
5× 5 - 3 30.33 24

obtained from this experiment for this model appear in Appendix C.1. This is also

the model we used to obtain the results shown in Figs. 8.5 and 8.6.

It is worthwhile to note that from the results presented in Table 8.1, the non-

parametric MRF model scored an average percentage error of 23.49 with a range

of [18.40–30.33], while the strong nonparametric MRF model scored an average

percentage error of 18.29 with a range of [12.94–25.48]. Therefore the strong non-

parametric MRF model clearly outperforms the nonparametric MRF model as pre-

determined by the minimax philosophy [211] which is discussed in Chapter 6.

The power of the open-ended classification is dependent on how low the asso-

ciated type I and II errors are. If the model achieves a very high goodness-of-fit

measurement for all textures within its class, then there is a low likelihood that a

texture of the class will be misclassified as not being of the class, and the type I
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error associated with the model will be low. Then if also the model achieves a very

low goodness-of-fit measurement for all textures outside its class, then there is a low

likelihood that a texture not of the class will be misclassified as being of the class,

and the type II error associated with the model will also be low. Keeping both type

I and II errors low is a matter of finding the right model that gives a high goodness-

of-fit to all textures within its class, while maintaining a low goodness-of-fit for all

textures outside its class. From the results in Table 8.1, which was performed over

100 VisTex texture mosaics [49, 203], the overall best model for the job is the strong

nonparametric MRF model with a 3× 3 neighbourhood, just pairwise cliques, and

a two tier multigrid. This model gave a type I plus type II error of 12.94%.

Given a set of goodness-of-fit probability maps for each texture model over an

image, a classified image may be obtained by labelling each pixel in the image with

the texture model class that achieved the highest goodness-of-fit. This is possible

since the probability maps have been pre-normalised through the use of the Kruskal-

Wallis statistic K. The Kruskal-Wallis statistic K is always chi-squared distributed,

and independent with respect to the number of training texture samples. In a real

application, the goodness-of-fit probability maps themselves are more likely to be the

acceptable output of the open-ended classification algorithm, as given in Fig. 8.4. A

goodness-of-fit probability map not only shows the segmentation and recognition of

the image with respect to a single texture model, but also the confidence associated

with that recognition.

8.6.1 Comparative assessment of performance

Texture models used in todays image analysis are designed for supervised classifi-

cation. Therefore to make a comparison between the performance of our texture

model and the standard models in todays literature, we must test the models under

supervised classification. This can be easily done using the MeasTex image texture

database and test suite [187]. In the following analysis we use four different test

suites; Grass, Material, OhanDube, and VisTex. The average score from these test

suites appears in the column titled All. Finally these scores are ranked from best to

worst in each table.

In the first table, Table 8.2, a list of summary scores for a suite of nonparametric

MRF models are presented. The key to the nonparametric MRF model names is

given in Table 8.3. From first perusal of the table it is evident (by looking at the
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relative ranks) that the nonparametric MRF model based on a 3× 3 neighbourhood

using just 3rd order cliques and a four tier multigrid gives the best performance

with about 75% accuracy. This shows that the strong nonparametric MRF model

does indeed add an advantageous functionality to the nonparametric MRF model.

The results in Table 8.2 for the nonparametric MRF models can be directly

compared to the results in Table 8.4 for the; fractal, Gabor, GLCM, and Gaussian

MRF models. The key to these model names is given in Table 8.5. Even the

worst performing standard model (the Fractal model) does better than the best

nonparametric MRF model (and is computationally more efficient). What this shows

is that our method of open-ended texture classification does not translate well to

supervised classification.

Table 8.2: MeasTex test suite summary scores – not normalised by priors

Test Suites
Model Grass Material OhanDube VisTex All Rank

MRF-n1t0 .732157 .767600 .680725 .680725 .723510 11
MRF-n1t1 .743578 .785322 .674175 .731708 .733695 8
MRF-n1t2 .764700 .784077 .677600 .747062 .743359 3
MRF-n1t3 .766828 .788995 .653425 .748470 .739429 4

MRF-n3c2t0 .638350 .687390 .604525 .650675 .645235 21
MRF-n3c2t1 .629728 .680813 .600075 .674262 .646219 19
MRF-n3c2t2 .621550 .678654 .589850 .692154 .645552 20
MRF-n3c2t3 .598307 .673072 .589975 .696625 .639494 22
MRF-n3c3t0 .720214 .776863 .691475 .709325 .724469 10
MRF-n3c3t1 .729285 .781795 .694400 .730533 .734003 7
MRF-n3c3t2 .747414 .789036 .690425 .749175 .744012 2
MRF-n3c3t3 .754221 .792018 .697400 .748270 .747977 1
MRF-n3t0 .733535 .761781 .668525 .705537 .717344 12
MRF-n3t1 .746742 .782454 .665350 .722929 .729368 9
MRF-n3t2 .766721 .788022 .650625 .742450 .736954 5
MRF-n3t3 .763900 .795795 .640075 .745591 .736340 6

MRF-n5c2t0 .659707 .681550 .601325 .668487 .652767 17
MRF-n5c2t1 .653392 .678340 .597475 .687891 .654274 16
MRF-n5c2t2 .643614 .677272 .586175 .689083 .649036 18
MRF-n5t0 .686642 .726740 .670875 .677470 .690431 14
MRF-n5t1 .678828 .737050 .649075 .699741 .691173 13
MRF-n5t2 .689757 .748400 .621250 .700987 .690098 15

While supervised classification uses a closed N class classifier to find definitive
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Table 8.3: Nonparametric MRF model key

Model Name Neighbourhood Size Clique Size Multigrid Height

MRF-n1t0 nearest 4 - 1
MRF-n1t1 nearest 4 - 2
MRF-n1t2 nearest 4 - 3
MRF-n1t3 nearest 4 - 4

MRF-n3c2t0 3× 3 2 1
MRF-n3c2t1 3× 3 2 2
MRF-n3c2t2 3× 3 2 3
MRF-n3c2t3 3× 3 2 4
MRF-n3c3t0 3× 3 3 1
MRF-n3c3t1 3× 3 3 2
MRF-n3c3t2 3× 3 3 3
MRF-n3c3t3 3× 3 3 4
MRF-n3t0 3× 3 - 1
MRF-n3t1 3× 3 - 2
MRF-n3t2 3× 3 - 3
MRF-n3t3 3× 3 - 4

MRF-n5c2t0 5× 5 2 1
MRF-n5c2t1 5× 5 2 2
MRF-n5c2t2 5× 5 2 3
MRF-n5t0 5× 5 - 1
MRF-n5t1 5× 5 - 2
MRF-n5t2 5× 5 - 3

boundaries between the training texture classes, the open-ended texture classifier

uses an ideal model to determine a confidence (or a goodness-of-fit) that one type of

texture exhibits similar characteristics to another. The difference being, in the later

case, no classification boundaries exist by which to discriminate texture classes.

Instead each texture model is used to determine the goodness-of-fit between the

unknown texture and its training texture. Classification is achieved by assigning, to

the unknown texture, the class of the model which achieved the highest goodness-

of-fit, unless this goodness-of-fit is too low, then the texture remains “unknown.”

The disadvantage with such an approach is that discriminative characteristics for

a whole set of training texture classes are not as well captured as with supervised

classification.

The ability for open-ended texture classification to perform in a supervised clas-
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Table 8.4: MeasTex test suite summary scores – not normalised by priors

Test Suites
Model Grass Material OhanDube VisTex All Rank

Fractal .906778 .908636 .904875 .813645 .883483 8
Gabor1 .889978 .967772 .978875 .906591 .935804 3
Gabor2 .880185 .955313 .985975 .898791 .930066 5
GLCM1 .891328 .944863 .883100 .820283 .884893 7
GLCM2 .916157 .964986 .866675 .852266 .900021 6
GMRF-std1s .917492 .966918 .972000 .885616 .935506 4
GMRF-std2s .917971 .977545 .991125 .932058 .954674 2
GMRF-std4s .948892 .969340 .988175 .932437 .959711 1

sification context is governed by the ability of the nonparametric MRF models to

produce adequate ideal models of the training texture. That is, models that give

a high goodness-of-fit probability for similar texture and low for everything else.

This condition is a lot more stringent than what is required of the models in the

supervised case. Therefore, unless the nonparametric MRF models are ideal, the use

of the open-ended classifier can not be expected to out perform a closed classifier

using a standard model where the textures are prior known.

There is also the question of how “similarity” is measured. This is partly de-

termined by the model through neighbourhood size, what clique sizes are used, and

the height of the multigrid. However it is also determined by how we measure the

classification probability. In our case, we do not use the standard interpretation

as given by the combination of various LPDFs, see Eq. (8.4). Instead we use our

own unique way of determining a goodness-of-fit probability, by comparing the set

of statistics obtainable from the training texture to those obtained from the texture

of interest, see Section 8.3. The consequence of this is that when the nonparamet-

ric model is under trained, the statistics will not change rapidly as the similarity

between a texture and training texture diminishes. Therefore a high goodness-of-fit

could be given to a texture that is not all that similar to the training texture. On the

other hand, if the nonparametric MRF model was overtrained, then the statistics

obtainable from the training texture would have a high entropy, and again dissimilar

textures could be given a high goodness-of-fit probability.

Even though the results presented in Table 8.2 show how unamenable the open-

ended classifier is to the supervised classification framework, we can still discern
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Table 8.5: MeasTex model key
Fractal Program: fractalClass

Command Line: fractalClass

Gabor1 Program: gaborClass
Wavelengths: 2, 4 and 8 pixel
Angles: 0, 45, 90, 135 degrees
Mask Size: 17x17 pixels
Gaussian Window: texton interpretation (sd = wavelength/2)
Command Line: gaborClass -texton -lambda 2,4,8 -theta 0,45,90,135

Gabor2 Program: gaborClass
Wavelengths: 2, 4, 8 and 16 pixel
Angles: 0, 45, 90, 135 degrees
Mask Size: 17x17 pixels
Gaussian Window: texton interpretation (sd = wavelength/2)
Command Line: gaborClass -texton -lambda 2,4,8,16 -theta 0,45,90,135

GLCM1 Program: glcmClass
Distances: 1 pixel
Angles: 0, 45, 90, 135 degrees
Re-quantisation: 32 grey levels
Rotation Invariance: average features over angles
Features: Energy, Entropy, Inertia, Haralick’s Correlation
Command Line: glcmClass -q 32 -af -d 1 -impl WDR76 -theta 0,45,90,135

GLCM2 Program: glcmClass
Distances: 1 pixel
Angles: 0, 45, 90, 135 degrees
Re-quantisation: 32 grey levels
Rotation Invariance: average features over angles
Command Line: glcmClass -q 32 -af -d 1 -theta 0,45,90,135

some information about the performance of the open-ended classifier. In particular,

if we look at the relative rankings of the different models presented in Table 8.2, we

can get an overall impression of the effect of varying any one of the nonparametric

MRF model’s specifications.

Table 8.6 demonstrates the general effect of increasing the neighbourhood size.

As the average rank increases with neighbourhood size, we can surmise that a small

neighbourhood is better for classification. In Table 8.7 it is the clique size that is

varied. From this table we can see that although it is advisable to keep the clique size

small, if the the clique size gets too small the model will start to be undertrained.

Lastly in Table 8.8 we see that increasing the maximum multigrid height improves

the classification accuracy. Just from these three tables we can conclude that the

optimal nonparametric MRF model would be MRF-n3c3t3. Note that, although

the tables suggest it, the optimal model could not have been MRF-n1c3t3 since
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the nearest neighbour neighbourhood can not support third order cliques. Now

since the expected optimal nonparametric MRF model is the same one as identified

in Table 8.2, we can also conclude that there is not too much interplay between

the three different model construction variables. The variables can be used almost

independently to optimise the nonparametric MRF model.

Table 8.6: Average rank for various neighbourhoods from Table 8.2

Neighbourhood Size Except clique models All models

nearest 4 6.50 6.50
3× 3 8.00 11.17
5× 5 14.00 15.50

Table 8.7: Average rank for various clique sizes from Table 8.2

Clique Size N3 models All models

2 20.50 19.00
3 5.00 5.00
- 8.00 9.09

Table 8.8: Average rank for various multigrid heights from Table 8.2

Multigrid Height Except clique models All models

1 12.33 14.17
2 10.00 12.00
3 7.67 10.50
4 5.00 8.25

8.7 Practical application

The final goal of this research was to produce a method by which an operator

may be able to take a radar satellite image; segment a small portion from the

image where the terrain was known; and use this as the training texture for the

ideal texture model. Then with respect to the texture model, find other similar
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Figure 8.7: Airborne SAR image of Cultana [143].

(a) (b)

Figure 8.8: Probability maps of the trees and grass superimposed on to Cultana
image.

terrain types within the image. Such a method of open-ended texture classification

would be ideal for terrain mapping of synthetic aperture radar (SAR) images, as

it would not require a complete library of textures as for closed N class classifier.

With our method, any operator may choose which type of texture they wished to

model, without the need for a pre-modelled version existing as part of a library.

The nonparametric MRF model is suited to this type of approach as there is no
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exhaustive training required to match the model to the texture. However since the

probability maps are pre-normalised, best results may be obtained if the user was

to iteratively update a labelled image map as probability maps were obtained for

each training texture class.

The practical application of segmenting and classifying a SAR image of Cultana,

Fig. 8.7, shows the two results if: 1) the operator chose a 64 × 64 patch of trees

from the bottom left corner, Fig. 8.8(a); or 2) the operator chose a 64 × 64 patch

of grass from the bottom right corner, Fig. 8.8(b). Again we have used the same

strong MRF texture model as applied in the open-ended classification of the texture

mosaics Figs. 8.5 and 8.6. In both cases the resulting probability maps have been

superimposed on top of the original SAR image. This gives a clear indication of how

the open-ended texture classification has performed. The results show the feasibility

of such an approach to segmentation and recognition of texture for terrain mapping

of SAR images. Further results of open-ended terrain classification are presented in

Appendix C.2. In this case, the results are presented in the form of a combined prob-

ability map, where each pixel is given the label of the training texture that achieved

the highest goodness-of-fit probability. The open-ended texture classification is not

only applicable to terrain recognition, in Appendix C.3 we present further results

showing the application of the open-ended texture classifier as a medical diagnostic

tool.
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Discussion and Conclusion

The nonparametric Markov random field (MRF) model has been shown to synthe-

sise representative examples of both structured and stochastic texture. This was

demonstrated through the use of our multiscale texture synthesis algorithm which

used our own novel pixel temperature function to help minimise phase discontinu-

ities in the texture realizations. Although an excellent technique for synthesising

texture, its application may be of limited use for now due to the high computa-

tional load involved. However we hypothesise that all homogeneous textures can be

modelled in this way by our nonparametric MRF model.

From our experimental evidence, that being we were able to synthesise texture of

high fidelity with respect to a training texture, we conclude that the nonparametric

MRF model is close to being an ideal model. That is, a model which can fully

characterises a particular texture. With such a model we envisaged it was feasible

to use it to recognise similar texture types from an image containing a background

of unknown texture types. We achieved this by comparing the texture characteris-

tics captured by the model with the texture characteristics obtained from a region

within an image. The nonparametric Kruskal-Wallis test [128] was used to test the

null hypothesis that the two sets of texture characteristics were from the same pop-

ulation. The confidence associated with the test was used to produce a probability

map of where the training texture class occurred within the image. This type of

classification approach was called open-ended texture classification. The advantage

of such an approach is that it does not require prior knowledge of all the other

types of texture present in the image. Such a technique is considered valuable to

the practical application of terrain mapping with SAR images [104].

173
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Although the range of textures synthesised, and the high fidelity of the textures

synthesised indicate that the nonparametric MRF model is capable of capturing all

of the visual characteristics of a texture, it was still not considered optimal for open-

ended texture classification. To perform open-ended texture classification when

unknown texture classes may be present in the image, a model needs to capture

those characteristics which uniquely identify the training texture class. However,

care should be taken so that the model is not overtrained, otherwise the model will

not recognise all textures of the same class. That is, the ideal texture model for

open-ended classification should only contain those characteristics specific to the

texture class it models.

To acquire the desired ideal model for open-ended classification from our non-

parametric MRF model, we followed the minimax entropy philosophy as stated by

Zhu Wu and Mumford [211]. Under their philosophy a texture model should max-

imise its entropy while retaining the unique characteristics of the texture. This

amounts to the texture model only modelling known characteristics of a texture,

while being completely noncommittal towards any characteristics that are not part

of the observed texture, or texture class. Under this philosophy Zhu, Wu, and Mum-

ford [211] designed their minimax model, which was optimised to obtain low entropy

for characteristics seen in the texture while maintaining high entropy as a default.

This ensured that the model inferred little information about unseen characteristics.

In our case, for the nonparametric MRF model, this same philosophy was equiva-

lent to reducing the statistical order of the model while retaining the integrity of

the respective synthesised textures. The lower the statistical order of the model, the

less likely it was to be overtrained. It was overtraining that hindered its use in the

open-ended texture classifier. However, a balance must be sought so that the model

remains unique to characteristics of the texture class.

We proposed a second nonparametric MRF model, one that was based on the

strong MRF model of Moussouris [148]. This model was shown to be equivalent

to the ANOVA construction [67], from which we were able to derive the general

ANOVA construction formula Eq. (6.10). The strong MRF model was also shown

to be able to synthesise representative versions of a training texture. With this

model we were able to limit the statistical order required to uniquely represent a

texture, thereby increasing the entropy of the model, which in turn produced a more

reliable model for open-ended texture classification.
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9.1 Advantages

Although synthesising texture via the multiscale texture synthesis algorithm is com-

putationally intensive, there is a hidden advantage in this method. If the lattice of

the synthetic texture was made toroidal (which would be an easy modification) then

the generated texture would be ideal for wallpapering or canvassing of a digital sur-

face. The texture synthesis algorithm would only need to be applied once, resulting

in a synthetic texture that could be tessellated with no discernible discontinuities.

As the synthesis process is able to produce a wide range of synthetic textures with

high fidelity, almost any homogeneous texture could be used, resulting in some quite

complex wallpapering.

Another important aspect of the nonparametric texture synthesis algorithm is

that it can help identify a neighbourhood upper bound required to model a par-

ticular texture. With this texture synthesis algorithm we have demonstrated that

the nonparametric MRF model is capable of capturing all the relevant characteris-

tics of a particular texture by synthesising subjectively similar texture of a training

texture. It may then be said that the neighbourhood used to synthesise this subjec-

tively similar texture would be the upper bound neighbourhood for this particular

texture. That is, any larger neighbourhood would be superfluous for this texture

model or any other model. Similarly we may also define an upper bound to the

relevant statistical order of the texture, a bound that defines a limit to the order

of statistics that are significant. This can be achieved by simulating the training

texture via our strong nonparametric MRF model.

An advantage of the open-ended texture classification technique is that it requires

virtually no training of the texture models, thereby allowing an end user to specify

their own type of texture to segment and recognise on an undetermined image.

Also the resulting probability maps are pre-normalised in the respect that all values

result from a single Kruskal-Wallis test [128]. This allows the end user to iteratively

improve their texture classification map by combining probability maps from other

open-ended texture classifications.

9.2 Limitations

Although ideally the choice of the strong MRF model should be based on the syn-

thesis results, the texture synthesis algorithm, Fig. 7.4, was too computationally
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intensive. However we found that the strong MRF model with a 3× 3 square neigh-

bourhood pairwise cliques, and two multigrid levels, was a good general texture

recognition model. It must be noted though, any short-comings in the algorithms

due to the high computational requirements are not a terminal limitation. Comput-

ers are still improving at an exponential rate, and there is little reason why todays

research should not anticipate future possibilities.

For the open-ended texture classification algorithm, there is still the problem

of choosing the correct structure for the nonparametric MRF model. The size of

the neighbourhood, the number of multiscales, and the order of the cliques, are

all variables that have to be predefined. This does not make open-ended texture

classification independent of human intervention. Therefore a range of results are

permissible, and accuracy associated with the results may be hard to define.

When comparing the accuracy of the open-ended texture classification algorithm

to a set of conventional N class classifiers, our algorithm did not perform very well.

However, the test was performed under a supervised classification framework, which

was not conducive to open-ended classification. The problem was that, in order

to keep our algorithm efficient, each training texture was used separately. This

meant that discriminative characteristics of a whole training texture class were not

captured as well as could be achieved by the conventional N class classifiers.

9.3 Future work

As a second order model was found to be the most versatile, in future work it might

be worthwhile to change the model used in the open-ended texture classification to

another type of second order model, e.g., like those models based on the stochastic

modelling of various multi-resolution filter responses [23, 103, 149, 211]. We chose

the nonparametric MRF model because we were interested in the search for the

order of statistics required for defining (i.e., modelling) textures. In the quest for

a fast efficient robust model, one based on multi-resolution filter responses may be

more practical.

When using the open-ended texture classification scheme with multiscales and/or

the strong MRF model, there is a need for a better confidence test. We took the

simple approach of multiplying together all the confidences for each set of statistics

from the different multigrid levels and/or cliques. However a better approach would
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be to use a single test for multiple population comparisons, something beyond apply-

ing multiple Kruskal-Wallis tests [128]. This has been partly addressed by Homer,

Meagher, Paget, and Longstaff in [104].

Further research into the open-ended classification of texture via the nonpara-

metric strong MRF model may like to consider such questions as to the effect of

shadow over the image, or rotation and rescaling of the texture. Questions that will

need to be answered in regards to the practical application of the open-ended tex-

ture classification algorithm are: 1) what is the expected accuracy of the classifier;

and 2) what is a reliable method for choosing the size of the neighbourhood for the

MRF model, or the cliques used in the strong MRF model.
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Appendix A

Extracting the Local Clique Set

The Markov random field model, which is used extensively in image processing, is

defined with respect to a neighbourhood system. The mathematical interpretation

of the model is defined with respect to the corresponding clique set. We present

a systematic method for extracting the complete local clique set from any neigh-

bourhood system on which a Markov random field may be defined. The technique

described in this Appendix has been published in IEE Proceedings Vision, Image

and Signal Processing [154].

A.1 Introduction

Markov Random Field (MRF) models are used in image restoration [82], region seg-

mentation [80] and texture analysis [50]. However the preferred method of analysis

in these applications is to use the equivalent Gibbs Random Field model. To ob-

tain this Gibbs model it is first necessary to extract the local clique set from the

neighbourhood system defined by the MRF model. This is a complex combinational

problem for large neighbourhood systems for which we propose a method to system-

atically extract the local clique set from any neighbourhood system. Although in

practice mostly small neighbourhood systems are used, which may not necessarily

benefit from this systematic method of extraction, we found it invaluable in our ex-

periments when we were able to use large neighbourhood systems for nonparametric

MRFs.

The property of an MRF is that given a point on a lattice, the probability

of that point being set to any particular value is conditional upon the values of its

179
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“neighbouring” points defined by a neighbourhood system. In other words, the MRF

is characterised by a local conditional probability function defined with respect to a

neighbourhood system. An equivalent Gibbs Random Field defines its probability

function over a set of local cliques which are subsets of the neighbouring points [17].

A.2 Neighbourhoods and their cliques

A comprehensive examination of Markov random fields is given by [78]. In this

section a brief overview of the MRF theory is presented in order to give the necessary

background on neighbourhoods and their respective cliques.

Denote a set of sites on a lattice by S, and the neighbourhood system over S as

N = {Ns, s ∈ S}, where Ns is the set of “neighbours” for s such that Ns ⊂ S, s 6∈
Ns. Given the random variable Xs at site s with value xs, the local conditional

probability function of a MRF with respect to the neighbourhood system N is

defined by the Hammersley and Clifford theorem [17] as,

P (Xs = xs|Xr = xr, r ∈ Ns) =
1

Zs
exp

{

−
∑

C∈Cs

VC(x)

}

, (A.1)

where Zs is a constant and VC is a potential function defined on the clique C. The

summation is over all cliques in the local clique set Cs. The variable x is the set of

values {xs, s ∈ S}.
The Hammersley and Clifford theorem implicitly requires the neighbourhood

system to adhere to the criterion that s ∈ Nr ⇔ r ∈ Ns. This implies that neigh-

bourhoods must be symmetrical if the MRF is homogeneous. Three different neigh-

bourhoods are shown in Figs. A.1(a)–(c) which are defined by,

N o
s = {r ∈ S : 0 < |s− r|2 ≤ o} ∀ r, s ∈ S, (A.2)

as given by [78] where o specifies the order of the neighbourhood.

Given a neighbourhood system N , a clique is a set C ⊆ S such that s, r ∈ C, s 6=
r, implies s ∈ Nr. That is, every pair of distinct sites in a clique are neighbours.

The single site subset is also a clique. The local clique set for the site s is defined

as Cs = {C ⊆ S : s ∈ C}.
The local clique set for the first-order neighbourhood N 1

s , Fig. A.1(a), is shown
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Figure A.1: Neighbourhoods and cliques: (a) The nearest-neighbour neighbourhood;
(b) second-order neighbourhood; (c) fourth-order neighbourhood; (d) local clique set
for nearest-neighbour neighbourhood; (e) clique types for nearest-neighbour neigh-
bourhood; (f) additional clique types for second-order neighbourhood.

in Fig. A.1(d). This local clique set has three different clique types which are shown

in Fig. A.1(e). The local clique set for the second-order neighbourhood, Fig. A.1(b),

contains the clique types shown in Figs. A.1(e) and (f).

A.3 Extraction of the local clique set

The proposed method for extracting the local clique set from a MRF neighbourhood

system is based on graphing a tree structure. The root of the tree represents a single

site. The branches at the first level represent all the pairwise connections to the sites
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in the neighbourhood. Further branches at the higher levels represent high order

connections that form more complex cliques.

Given a set of sites S, let n(r) denote the node number of the site r ∈ S with

respect to the neighbourhood Ns where r ∈ Ns s ∈ S. Figs. A.1(a)–(c) show the

node numbers for neighbourhoods N 1
s , N 2

s and N 4
s respectively. The node numbers

used in clique trees refer directly to the sites in the respective neighbourhoods.

A.3.1 Method 1: growing the clique tree

Follow the steps outlined in Fig. A.2 as to how to graph the clique tree.

A.3.2 Method 2: reading cliques from the tree

A clique in the tree is represented as any tree transversal following the arrows from

one level to the next beginning at the root node (level 1). The single site clique

is represented as the single node n(s) = 0 at level 1. The pairwise cliques are

represented as the node n(s) = 0 plus any other node n(r) at level 2. In Fig. A.3

an example of a three site clique is represented by the nodes {0, 2, 4}.
The complete set of cliques that can possibly be read from the clique tree in

Fig. A.3 is the local clique set for the neighbourhood shown in Fig. A.1(b). The

clique tree of Fig. A.4 represents the local clique set for the neighbourhood shown

in Fig. A.1(c).

A.4 Clique tree theorems

The following theorems prove that the local clique set of a neighbourhood is com-

pletely represented by its respective clique tree.

Theorem A.1 A set of nodes derived from Methods 1 and 2 is a clique

Proof. By the construction of the clique tree, every node on the tree is contained

within the neighbourhood of all other nodes on the tree that can transverse to it by

following the arrows.

Theorem A.2 Each clique represented by the clique tree is unique
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Method 1: Graphing the Clique Tree

Input:

S = {s, r, t, . . .} ← set of sites on a lattice

Ns ← neighbourhood for site s ∈ S

n(r)← node numbers for sites r ∈ Ns

Begin

1. Place the node n(s) = 0 s ∈ S at level 1. This is the root node of
the tree.

2. Place the nodes n(r) r ∈ Ns at level 2.

3. Link the root node n(s) = 0 with an arrow to each node n(r) r ∈ Ns

at level 2.

4. Let m = 1.

5. While nodes exist at level m + 1 do

5.1. Increment m

5.2. For each n(r) at level m do

5.2.1. Let n(s) be the node at level m− 1 that directly links
to the node n(r) at level m.

5.2.2. Place the nodes n(t) t ∈ S at level m+1 which adhere
to the following criteria:

• An arrow directly links the node n(s) at level
m− 1 with the node n(t) at level m

• t ∈ Nr

• n(t) > n(r)

5.2.3. Link the node n(r) at level m with an arrow to each
node n(t) recently placed at level m + 1.

5.3. done

6. done

End

Figure A.2: Method 1: Graphing the Clique Tree

Proof. In growing the clique tree via Method 1, a node n(s) at level m only links

to nodes n(r) at level m + 1 for which n(r) > n(s). This means that the nodes

{n(s) = 0, n(r), n(t), . . .}, which can be read from the clique tree via Method 2, are

monotonic increasing in node number. Since the nodes are ordered, no permutations

of the same set of nodes can be read from the clique tree via Method 2. Therefore

each different clique read via Method 2 is unique.

Theorem A.3 Every local clique is included in the tree
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Figure A.3: Clique tree for the neighbourhood shown in Fig. A.1(b).
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4 9 10 11 12
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Figure A.4: Clique tree for the neighbourhood shown in Fig. A.1(c).

Proof. Consider any local clique {r, . . . , s} for the site s ∈ S. The clique can be re-

arrange into a set of monotonic increasing node numbers given by the neighbourhood

Ns such that,

{t, s . . . , r} ⇒ {n(s) = 0, n(r), . . . , n(t)}. (A.3)

The set of nodes {n(s), n(r), . . . , n(t)} cannot represent a local clique without the

first node n(s) = 0. The next node n(r) must be contained in the neighbourhood Ns

and is therefore represented at level 2 on the clique tree. Continuing along the list,

the next node must be a neighbour to each of the previous nodes. Because of the

criteria stated at step 5.2.2 in Method 1, this node exists on the clique tree at level

3 and is linked by an arrow from the node n(r) at level 2. By considering each node

from a local clique in a monotonic increasing order, it is clear that by the structure

of the clique tree, the local clique must be included in the clique tree.

Theorem A.4 For each clique type with n nodes, ∃ n local cliques
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Proof. A local clique of the neighbourhood Ns is a clique that contains the site s.

For a particular clique type with n nodes any one of the nodes may represent the

site s. Therefore, there exists n unique local cliques of that type.

A.5 Discussion and conclusion

The clique tree method extracts all the local cliques from any MRF neighbourhood

system. The clique tree method only extracts cliques from MRF neighbourhood

systems because the clique tree is formed on the premise that s ∈ Nr ⇔ r ∈ Ns. For

a MRF neighbourhood system defined on a homogeneous field, each neighbourhood

has to be identical and symmetrical in shape.

The clique tree has been structured so that the local cliques of a particular size

reside at the one level. Level 1 holds the single site clique {s}. The next level,

level 2, holds all the pairwise cliques. This ordering of the cliques continues up

the levels of the tree until all the local cliques have been accounted for. The tree

structure makes it very easy to identify how many local cliques of a certain size

exist, it is just the number of sites at the corresponding level of the tree. Therefore,

the neighbourhood system of Fig. A.1(b) has 1 single site clique, 8 pairwise cliques,

12 third order cliques, and 4 fourth order cliques. This is shown in Fig. A.3. The

total number of cliques in the local clique set is, of course, the total number of sites

shown on the tree.
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