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App endix B

Synthesised Textures

B.1 Textures synthesised with various neigh bour-

hoods

When modelling with MRFs it is not always apparent what neighbourhood size

should be used. Certainly there is very little in the literature about how to choose

an appropriate neighbourhood size given a certain texture. The most widely ac-

cepted technique is to test various neighbourhood sizesuntil the desired one is

found. The test usually involves �nding out how well the model performs in the

desiredapplication. In this casewe wish to know how well the model performs at

texture synthesis.

The following Figs. B.1{B.166 demonstratehow well the nonparametric MRF

model is able to synthesise various texture types. All textures were synthesised

using our multiscale texture synthesis algorithm, as outlined in Fig. 7.4. In each

casethe training textures were 128� 128 pixels from which 256� 256 synthetic

versionswere produced. The lack of phasediscontinuity in the larger synthesised

imagessuggestthat the texture characteristicsmust havebeencaptureby the model.

The �rst set of training textures, Figs. B.1{B.72, are from the Brodatz al-

bum [28]. The �gures show how the synthetic texture varies as the neighbourhood

sizeincreasesfrom nearestneighbour to a 9� 9 neighbourhood. For each neighbour-

hood sizetwo synthesis results are presented, one for the Gibbs sampling method,

and onefor the ICM samplingmethod. This is alsodonefor the secondset of train-

ing textures, Figs. B.73{B.166. This secondset is from VisTex [203]. However, in
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188 APPENDIX B. SYNTHESISED TEXTURES

this casethe neighbourhood sizeis only testedfrom the nearestneighbour up to the

7 � 7 neighbourhood.

When viewing theseresults, take the time to considerthe consequencesof choos-

ing a particular neighbourhood size for the classi�cation algorithm. If the neigh-

bourhood sizeis too small, the model will be too generaland the will not producea

reliable likelihood function for the particular texture class.If the neighbourhood size

is too large, the model will be too speci�c and therefore not produce an adequate

likelihood for textures of a similar class. When this synthesis experiment was �rst

undertaken, we were looking to seeif it was possibleto capture all the characteris-

tics of a texture so it could be realistically reproducedover a large area. We found,

as the results indicate, that the larger the neighbourhood, the more realistic our

reproductions. However thesereproductions incurred more repetitiv e structure as

the neighbourhood sizeincreased.This is an indication that as the neighbourhood

size increases,the model becomesmore \speci�c" and therefore lessadequatefor

classi�cation. The ideal neighbourhood sizefor classi�cation will producea texture

that is representativ e of the training texture, but still stochastic in nature.

Beforemaking a decisionon which neighbourhood sizeto employ for classi�ca-

tion, considerthe signi�canceof the di�erence betweenthe Gibbs and ICM sampling

results. From the results it is visually obvious that the ICM sampling schemeper-

forms marginally better than the Gibbs sampling scheme. This can be explained,

as in Section7.7, that although the modesof the LCPDF are well estimated, esti-

mating the full distribution of the LCPDF as a sum of Gaussiandistributions can

produce inherent noiseinto the estimate. However, it is how well the whole distri-

bution of the LCPDF is modelled that will determinehow \ideal" the model is for

open-endedclassi�cation. Therefore,although it is the Gibbs samplingschemethat

performsthe worst, it is the Gibbs samplingschemethat will determinehow \ideal"

the model is.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.1: Brodatz texture D001a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.2: Brodatz texture D002a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.3: Brodatz texture D002b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.4: Brodatz texture D003a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.



B.1. TEXTURES SYNTHESISED WITH VARIOUS NEIGHBOURHOODS 193

(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.5: Brodatz texture D003b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.6: Brodatz texture D004a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.7: Brodatz texture D004b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.8: Brodatz texture D004c: (a) original 128� 128 image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.9: Brodatz texture D005a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.10: Brodatz texture D005b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.11: Brodatz texture D005c: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.12: Brodatz texture D006a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.13: Brodatz texture D007a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.14: Brodatz texture D007b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.15: Brodatz texture D009a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.16: Brodatz texture D009b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.17: Brodatz texture D009c: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.18: Brodatz texture D010a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.19: Brodatz texture D011a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.20: Brodatz texture D011b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.21: Brodatz texture D012a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.22: Brodatz texture D012b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.23: Brodatz texture D012c: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.24: Brodatz texture D013a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.25: Brodatz texture D014a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.26: Brodatz texture D015a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.27: Brodatz texture D015b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.28: Brodatz texture D015c: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.29: Brodatz texture D017a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.



218 APPENDIX B. SYNTHESISED TEXTURES

(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.30: Brodatz texture D017b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.31: Brodatz texture D017c: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.32: Brodatz texture D017d: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.33: Brodatz texture D018a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.



222 APPENDIX B. SYNTHESISED TEXTURES

(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.34: Brodatz texture D019a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.35: Brodatz texture D024a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.36: Brodatz texture D024b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.37: Brodatz texture D026a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.38: Brodatz texture D028a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.39: Brodatz texture D029a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.40: Brodatz texture D029b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.



B.1. TEXTURES SYNTHESISED WITH VARIOUS NEIGHBOURHOODS 229

(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.41: Brodatz texture D031a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.42: Brodatz texture D032a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.43: Brodatz texture D033a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.44: Brodatz texture D037a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.45: Brodatz texture D038a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.



234 APPENDIX B. SYNTHESISED TEXTURES

(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.46: Brodatz texture D038b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.47: Brodatz texture D041a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.48: Brodatz texture D051a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.49: Brodatz texture D051b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.50: Brodatz texture D052a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.



B.1. TEXTURES SYNTHESISED WITH VARIOUS NEIGHBOURHOODS 239

(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.51: Brodatz texture D054a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.52: Brodatz texture D055a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.53: Brodatz texture D057a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.54: Brodatz texture D061a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.55: Brodatz texture D062a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.56: Brodatz texture D063a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.57: Brodatz texture D068a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.58: Brodatz texture D068b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.



B.1. TEXTURES SYNTHESISED WITH VARIOUS NEIGHBOURHOODS 247

(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.59: Brodatz texture D069a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.60: Brodatz texture D070a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.61: Brodatz texture D071a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.62: Brodatz texture D071b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.63: Brodatz texture D072a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.64: Brodatz texture D074a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.65: Brodatz texture D077a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.66: Brodatz texture D084a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.67: Brodatz texture D086a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.68: Brodatz texture D089a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.69: Brodatz texture D090a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.70: Brodatz texture D091a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.71: Brodatz texture D092a: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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(a) Training texture (b) Nearest neighbour (c) Nearestneighbour

(d) 5 � 5 neighbourhood (e) 5 � 5 neighbourhood (f ) 7 � 7 neighbourhood

(g) 7 � 7 neighbourhood (h) 9 � 9 neighbourhood (i) 9 � 9 neighbourhood

Figure B.72: Brodatz texture D092b: (a) original 128� 128image;(b{i) synthesised
256� 256 images;(b) using Gibbs samplingand nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand 5� 5 neighbourhood; (e) usingICM samplingand 5� 5 neighbourhood;
(f ) using Gibbs sampling and 7 � 7 neighbourhood; (g) using ICM sampling and
7 � 7 neighbourhood; (h) using Gibbs samplingand 9 � 9 neighbourhood; (i) using
ICM sampling and 9 � 9 neighbourhood.
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