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App endix B

Synthesised Textures

B.1 Textures synthesised with various neighbour-
hoods

When modelling with MRFs it is not always apparernt what neighbourhood size
should be used. Certainly there is very little in the literature about how to choose
an appropriate neighbourhood size given a certain texture. The most widely ac-
cepted technique is to test various neighbourhood sizesuntil the desired one is
found. The test usually involves nding out how well the model performsin the
desiredapplication. In this casewe wish to know how well the model performs at
texture syrthesis.

The following Figs. B.1{B.166 demonstrate how well the nonparametric MRF
model is able to syrnthesise various texture types. All textures were synthesised
using our multiscale texture syrthesis algorithm, as outlined in Fig. 7.4. In eadh
casethe training textures were 128 128 pixels from which 256 256 syrthetic
versionswere produced. The lack of phasediscorinuity in the larger syrnthesised
imagessuggesthat the texture characteristicsmust have beencapture by the model.

The rst set of training textures, Figs. B.1{B.72, are from the Brodatz al-
bum [28. The gures shav how the syrthetic texture varies asthe neighbourhood
sizeincreasedrom nearestneighbourto a9 9 neighbourhood. For ead neighbour-
hood sizetwo syrthesis results are presered, one for the Gibbs sampling method,
and onefor the ICM samplingmethod. This is alsodonefor the secondset of train-
ing textures, Figs. B.73{B.166. This secondset is from VisTex [203]. Howeer, in

187



188 APPENDIX B. SYNTHESISED TEXTURES

this casethe neighbourhood sizeis only tested from the nearestneighbour up to the
7 7 neighbourhood.

When viewing theseresults, take the time to considerthe consequencesf choos-
ing a particular neighbourhood size for the classi cation algorithm. If the neigh-
bourhood sizeis too small, the model will be too generaland the will not producea
reliable likelihood function for the particular texture class. If the neighbourhood size
is too large, the model will be too speci ¢ and therefore not produce an adequate
likelihood for textures of a similar class. When this synthesis experimert was rst
undertaken, we were looking to seeif it was possibleto capture all the characteris-
tics of a texture soit could be realistically reproducedover a large area. We found,
as the results indicate, that the larger the neighbourhood, the more realistic our
reproductions. Howewer these reproductions incurred more repetitiv e structure as
the neighbourhood sizeincreased. This is an indication that asthe neighbourhood
sizeincreases,the model becomesmore \speci c" and therefore lessadequatefor
classi cation. The ideal neighbourhood sizefor classi cation will producea texture
that is represerativ e of the training texture, but still stochastic in nature.

Before making a decisionon which neighbourhood sizeto employ for classi ca-
tion, considerthe signi cance of the di erence betweenthe Gibbsand ICM sampling
results. From the resultsit is visually obvious that the ICM sampling stheme per-
forms marginally better than the Gibbs sampling scheme. This can be explained,
asin Section7.7, that although the modesof the LCPDF are well estimated, esti-
mating the full distribution of the LCPDF as a sum of Gaussiandistributions can
produceinherert noiseinto the estimate. Howewer, it is how well the whole distri-
bution of the LCPDF is modelled that will determine how \ideal” the model is for
open-endedclassi cation. Therefore,althoughiit is the Gibbs samplingsdhemethat
performsthe worst, it is the Gibbs samplingsthemethat will determinehow \ideal"
the model is.
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(a) Training texture

(g) 7 7 neighbourhood (h) 9 9 neighbourhood (i 9 9 neighbourhood

Figure B.1: Brodatz texture DOO1l1a: (a) original 128 128image;(b{i) synthesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour

(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood

(g) 7 7 neighbourhood (h) 9 9 neighbourhood (i 9 9 neighbourhood

Figure B.2: Brodatz texture D002a: (a) original 128 128image;(b{i) synthesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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Figure B.3: Brodatz texture D002b: (a) original 128 128image;(b{i) synthesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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FY
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Figure B.4: Brodatz texture D003a: (a) original 128 128image;(b{i) synthesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(g) 7 7 neighbourhood (h) 9 9 neighbourhood (i 9 9 neighbourhood

Figure B.5: Brodatz texture DO03b: (a) original 128 128image;(b{i) synthesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.



194 APPENDIX B. SYNTHESISED TEXTURES

R
N

A ARIAARRERY
L SN
N G o

TR RR G T S TR T
e Vbt S o T R L R

g Yo s i

(g) 7 7 neighbourhood (h) 9 9 neighbourhood (i 9 9 neighbourhood

Figure B.6: Brodatz texture D004a: (a) original 128 128image;(b{i) synthesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(g) 7 7 neighbourhood (h) 9 9 neighbourhood (i 9 9 neighbourhood

Figure B.7: Brodatz texture D004b: (a) original 128 128image;(b{i) synthesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.8: Brodatz texture D004c: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.9: Brodatz texture DO0O5a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.10: Brodatz texture DOO5b: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.11: Brodatz texture D0O05c: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.12: Brodatz texture DOO6a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.13: Brodatz texture DOO7a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.



202 APPENDIX B. SYNTHESISED TEXTURES

(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.14: Brodatz texture DOO7b: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.15: Brodatz texture DO09a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.16: Brodatz texture DO09b: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.17: Brodatz texture DO09c: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.18: Brodatz texture D010a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.19: Brodatz texture DO11a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.20: Brodatz texture D0O11b: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.21: Brodatz texture D012a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.22: Brodatz texture D012b: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.23: Brodatz texture D012c: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.24: Brodatz texture D013a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.25: Brodatz texture D014a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.26: Brodatz texture DO15a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.27: Brodatz texture D015b: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.28: Brodatz texture DO15c: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.29: Brodatz texture DO17a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.30: Brodatz texture D017b: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.31: Brodatz texture DO17c: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.32: Brodatz texture D017d: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.33: Brodatz texture D018a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.



222 APPENDIX B. SYNTHESISED TEXTURES

(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.34: Brodatz texture D019a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.35: Brodatz texture D024a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.36: Brodatz texture D024b: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.37: Brodatz texture D026a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.38: Brodatz texture D028a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.39: Brodatz texture D029a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.40: Brodatz texture D029b: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.41: Brodatz texture DO31a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.42: Brodatz texture D032a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.43: Brodatz texture D033a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.44: Brodatz texture D037a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.45: Brodatz texture D038a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.46: Brodatz texture D038b: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.47: Brodatz texture DO41a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.48: Brodatz texture D0O51a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.49: Brodatz texture D051b: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.50: Brodatz texture D052a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.51: Brodatz texture D054a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.52: Brodatz texture D0O55a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.53: Brodatz texture D057a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.54: Brodatz texture DO61a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.55: Brodatz texture D062a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.56: Brodatz texture D063a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.



B.1. TEXTURES SYNTHESISED WITH VARIOUS NEIGHBOURHOODS 245

(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.57: Brodatz texture D068a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.58: Brodatz texture D068b: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.59: Brodatz texture D069a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.60: Brodatz texture DO70a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.61: Brodatz texture DO71a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.62: Brodatz texture DO71b: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.63: Brodatz texture D0O72a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.64: Brodatz texture DO74a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.65: Brodatz texture DO77a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.66: Brodatz texture D084a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.67: Brodatz texture D086a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.68: Brodatz texture D089a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.69: Brodatz texture D090a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.70: Brodatz texture D091a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.71: Brodatz texture D092a: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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(a) Training texture (b) Nearestneighbour (c) Nearestneighbour
(d) 5 5 neighbourhood (e) 5 5 neighbourhood (f) 7 7 neighbourhood
(9) 7 7 neighbourhood (h) 9 9 neighbourhood () 9 9 neighbourhood

Figure B.72: Brodatz texture D092b: (a) original 128 128image;(b{i) synhesised
256 256images;(b) using Gibbs sampling and nearestneighbour neighbourhood;
(c) using ICM sampling and nearest neighbour neighbourhood; (d) using Gibbs
samplingand5 5 neighbourhood; (e) usinglCM samplingand5 5 neighbourhood;
(f) using Gibbs samplingand 7 7 neighbourhood; (g) using ICM sampling and
7 7 neighbourhood; (h) using Gibbs samplingand 9 9 neighbourhood; (i) using
ICM samplingand 9 9 neighbourhood.
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