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B.2 Textures synthesised with various multiscales

In our multiscale texture synthesis algorithm, as outlined in Fig. 7.4, one of the

variables is the multigrid height. In the presented algorithm we have set the variable

to the maximum height possible. This however, is a default setting and is not

a requirement. In the following Figs. B.167–B.175 we explore the possibility of

synthesising various Brodatz textures [28] with different settings of the multigrid

height. For each training texture a synthetic texture was produced, one using 2

multigrid levels, another 3, and also all multigrid levels. In each case, we used a

5 × 5 neighbourhood and also a 7 × 7 neighbourhood. Again the training textures

were 128 × 128 pixel images, and the synthetic counterparts were 256 × 256 pixel

images.

The synthesis results, Figs. B.167–B.175, indicate that it is possible to limit

the multigrid to just a couple of levels. As discussed in Section 7.7, the lower the

multigrid height can be set the better. In fact, with some of these textures, we

can successfully model them with just two grid levels. In combination with neigh-

bourhood size this gives an indication of the spatial extent of the direct interactions

between pixels, i.e., the required spatial extent of the neighbourhood. From the ob-

servational results, the required spatial extent of a neighbourhood is related to the

macro-texture and how spatially diverse it is. That is, fine texture like Fig. B.174

can be modelled with a small neighbourhood at a low multigrid height, while coarse

texture like Fig. B.170 needs to be modelled with a larger neighbourhood at a higher

multigrid height.

The neighbourhood size and maximum multigrid height are two parameters that

can be used to optimise the “ideal” model for open-ended texture classification. Ba-

sically an ideal model is optimised when it captures all of the characteristic features

of a texture class, but no more. The ideal model does not want to be overtrained

by capturing features that are only specific to the training texture and not to the

class it belongs. Therefore the choice of neighbourhood size and maximum multi-

grid height should be made on the basis that they are the minimum required to

reproduce representative synthetic texture of the texture class.



356

(a) Training texture

(b) 2 multigrid levels (c) 3 multigrid levels (d) All multigrid levels

(e) 2 multigrid levels (f) 3 multigrid levels (g) All multigrid levels

Figure B.167: Brodatz texture D001a: (a) original 128 × 128 image; (b–g) synthe-
sised 256 × 256 images using Gibbs sampling; (b) using 5 × 5 neighbourhood and
2 multigrid levels; (c) using 5 × 5 neighbourhood and 3 multigrid levels; (d) using
5 × 5 neighbourhood and all multigrid levels; (e) using 7 × 7 neighbourhood and 2
multigrid levels; (f) using 7×7 neighbourhood and 3 multigrid levels; (g) using 7×7
neighbourhood and all multigrid levels.
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(a) Training texture

(b) 2 multigrid levels (c) 3 multigrid levels (d) All multigrid levels

(e) 2 multigrid levels (f) 3 multigrid levels (g) All multigrid levels

Figure B.168: Brodatz texture D001c: (a) original 128 × 128 image; (b–g) synthe-
sised 256 × 256 images using Gibbs sampling; (b) using 5 × 5 neighbourhood and
2 multigrid levels; (c) using 5 × 5 neighbourhood and 3 multigrid levels; (d) using
5 × 5 neighbourhood and all multigrid levels; (e) using 7 × 7 neighbourhood and 2
multigrid levels; (f) using 7×7 neighbourhood and 3 multigrid levels; (g) using 7×7
neighbourhood and all multigrid levels.
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(a) Training texture

(b) 2 multigrid levels (c) 3 multigrid levels (d) All multigrid levels

(e) 2 multigrid levels (f) 3 multigrid levels (g) All multigrid levels

Figure B.169: Brodatz texture D003a: (a) original 128 × 128 image; (b–g) synthe-
sised 256 × 256 images using Gibbs sampling; (b) using 5 × 5 neighbourhood and
2 multigrid levels; (c) using 5 × 5 neighbourhood and 3 multigrid levels; (d) using
5 × 5 neighbourhood and all multigrid levels; (e) using 7 × 7 neighbourhood and 2
multigrid levels; (f) using 7×7 neighbourhood and 3 multigrid levels; (g) using 7×7
neighbourhood and all multigrid levels.
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(a) Training texture

(b) 2 multigrid levels (c) 3 multigrid levels (d) All multigrid levels

(e) 2 multigrid levels (f) 3 multigrid levels (g) All multigrid levels

Figure B.170: Brodatz texture D015a: (a) original 128 × 128 image; (b–g) synthe-
sised 256 × 256 images using Gibbs sampling; (b) using 5 × 5 neighbourhood and
2 multigrid levels; (c) using 5 × 5 neighbourhood and 3 multigrid levels; (d) using
5 × 5 neighbourhood and all multigrid levels; (e) using 7 × 7 neighbourhood and 2
multigrid levels; (f) using 7×7 neighbourhood and 3 multigrid levels; (g) using 7×7
neighbourhood and all multigrid levels.
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(a) Training texture

(b) 2 multigrid levels (c) 3 multigrid levels (d) All multigrid levels

(e) 2 multigrid levels (f) 3 multigrid levels (g) All multigrid levels

Figure B.171: Brodatz texture D020a: (a) original 128 × 128 image; (b–g) synthe-
sised 256 × 256 images using Gibbs sampling; (b) using 5 × 5 neighbourhood and
2 multigrid levels; (c) using 5 × 5 neighbourhood and 3 multigrid levels; (d) using
5 × 5 neighbourhood and all multigrid levels; (e) using 7 × 7 neighbourhood and 2
multigrid levels; (f) using 7×7 neighbourhood and 3 multigrid levels; (g) using 7×7
neighbourhood and all multigrid levels.
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(a) Training texture

(b) 2 multigrid levels (c) 3 multigrid levels (d) All multigrid levels

(e) 2 multigrid levels (f) 3 multigrid levels (g) All multigrid levels

Figure B.172: Brodatz texture D021a: (a) original 128 × 128 image; (b–g) synthe-
sised 256 × 256 images using Gibbs sampling; (b) using 5 × 5 neighbourhood and
2 multigrid levels; (c) using 5 × 5 neighbourhood and 3 multigrid levels; (d) using
5 × 5 neighbourhood and all multigrid levels; (e) using 7 × 7 neighbourhood and 2
multigrid levels; (f) using 7×7 neighbourhood and 3 multigrid levels; (g) using 7×7
neighbourhood and all multigrid levels.
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(a) Training texture

(b) 2 multigrid levels (c) 3 multigrid levels (d) All multigrid levels

(e) 2 multigrid levels (f) 3 multigrid levels (g) All multigrid levels

Figure B.173: Brodatz texture D022a: (a) original 128 × 128 image; (b–g) synthe-
sised 256 × 256 images using Gibbs sampling; (b) using 5 × 5 neighbourhood and
2 multigrid levels; (c) using 5 × 5 neighbourhood and 3 multigrid levels; (d) using
5 × 5 neighbourhood and all multigrid levels; (e) using 7 × 7 neighbourhood and 2
multigrid levels; (f) using 7×7 neighbourhood and 3 multigrid levels; (g) using 7×7
neighbourhood and all multigrid levels.
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(a) Training texture

(b) 2 multigrid levels (c) 3 multigrid levels (d) All multigrid levels

(e) 2 multigrid levels (f) 3 multigrid levels (g) All multigrid levels

Figure B.174: Brodatz texture D077a: (a) original 128 × 128 image; (b–g) synthe-
sised 256 × 256 images using Gibbs sampling; (b) using 5 × 5 neighbourhood and
2 multigrid levels; (c) using 5 × 5 neighbourhood and 3 multigrid levels; (d) using
5 × 5 neighbourhood and all multigrid levels; (e) using 7 × 7 neighbourhood and 2
multigrid levels; (f) using 7×7 neighbourhood and 3 multigrid levels; (g) using 7×7
neighbourhood and all multigrid levels.
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(a) Training texture

(b) 2 multigrid levels (c) 3 multigrid levels (d) All multigrid levels

(e) 2 multigrid levels (f) 3 multigrid levels (g) All multigrid levels

Figure B.175: Brodatz texture D103a: (a) original 128 × 128 image; (b–g) synthe-
sised 256 × 256 images using Gibbs sampling; (b) using 5 × 5 neighbourhood and
2 multigrid levels; (c) using 5 × 5 neighbourhood and 3 multigrid levels; (d) using
5 × 5 neighbourhood and all multigrid levels; (e) using 7 × 7 neighbourhood and 2
multigrid levels; (f) using 7×7 neighbourhood and 3 multigrid levels; (g) using 7×7
neighbourhood and all multigrid levels.
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B.3 Textures synthesised with various clique sets

An important aspect of the texture synthesis algorithm is its ability to test the

statistical order required to model various textures. By choosing the maximum

clique size that is used in the strong MRF model, we can test to see if the defined

model can be used to synthesise a representative version of the training texture. If

indeed the synthetic texture is visually similar to that of the training texture, we

may say that the texture contains no significant statistical information greater than

the order representative of the maximum clique size.

In Figs. B.176–B.179 we use various forms of the strong MRF model to synthesise

the texture. We look at the difference between using the direct estimate, Eq. (6.10),

and the simple estimate, Eq. (6.49), of the LPDF. As discussed in Section 6.6, the

direct estimate is really only applicable for the strong MRF model when no greater

than second order cliques are used. This accounts for the fact that using fourth and

third order cliques in the strong MRF model did not produce representative versions

of the training texture. Better results were obtained with using the simple estimate.

However Fig. B.179(b) does show the surprising capability of the direct estimation

technique.

Choosing small clique sizes is one method for reducing the statistical content in

the model. Another method is to reduce the number of cliques by discriminating on

the basis of their associated entropy. In the following Figs. B.176–B.179, we test to

see how many third order cliques are required to achieve an adequate reproduction

of a training texture. in each case we choose a subset of the third order cliques

that had the lowest entropy. Unfortunately this was almost a random process, as

all clique entropies were virtually the same.

A further set of synthesised textures is presented in Figs. B.180–B.221. Again the

strong MRF model was used, but this time only pairwise cliques were incorporated.

The training texture were from VisTex [203].
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(a) Training texture (b) 2nd and lower order cliques (c) 2nd order cliques

(d) 3rd order cliques (e) 3rd order cliques (f) 3rd order cliques

(g) 4th and lower order cliques (h) 4th order cliques (i) No cliques

Figure B.176: Brodatz texture D003a: (a) original 128×128 image; (b–i) synthesised
256×256 images using Gibbs sampling and 5×5 neighbourhood; (b) using pairwise
and single site cliques; (c) using just pairwise cliques; (d) using just 10 of the 3rd
order cliques with the lowest entropy; (e) using just 20 of the 3rd order cliques with
the lowest entropy; (f) using just 3rd order cliques; (g) using 4th and all lower order
cliques; (h) using just 4th order cliques; (i) using plain nonparametric MRF.
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(a) Training texture (b) 2nd and lower order cliques (c) 2nd order cliques

(d) 3rd order cliques (e) 3rd order cliques (f) 3rd order cliques

(g) 4th and lower order cliques (h) 4th order cliques (i) No cliques

Figure B.177: Brodatz texture D021a: (a) original 128×128 image; (b–i) synthesised
256×256 images using Gibbs sampling and 5×5 neighbourhood; (b) using pairwise
and single site cliques; (c) using just pairwise cliques; (d) using just 10 of the 3rd
order cliques with the lowest entropy; (e) using just 20 of the 3rd order cliques with
the lowest entropy; (f) using just 3rd order cliques; (g) using 4th and all lower order
cliques; (h) using just 4th order cliques; (i) using plain nonparametric MRF.
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(a) Training texture (b) 2nd and lower order cliques (c) 2nd order cliques

(d) 3rd order cliques (e) 3rd order cliques (f) 3rd order cliques

(g) 4th and lower order cliques (h) 4th order cliques (i) No cliques

Figure B.178: Brodatz texture D022a: (a) original 128×128 image; (b–i) synthesised
256×256 images using Gibbs sampling and 5×5 neighbourhood; (b) using pairwise
and single site cliques; (c) using just pairwise cliques; (d) using just 10 of the 3rd
order cliques with the lowest entropy; (e) using just 20 of the 3rd order cliques with
the lowest entropy; (f) using just 3rd order cliques; (g) using 4th and all lower order
cliques; (h) using just 4th order cliques; (i) using plain nonparametric MRF.
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(a) Training texture (b) 2nd and lower order cliques (c) 2nd order cliques

(d) 3rd order cliques (e) 3rd order cliques (f) 3rd order cliques

(g) 4th and lower order cliques (h) 4th order cliques (i) No cliques

Figure B.179: Brodatz texture D077a: (a) original 128×128 image; (b–i) synthesised
256×256 images using Gibbs sampling and 5×5 neighbourhood; (b) using pairwise
and single site cliques; (c) using just pairwise cliques; (d) using just 10 of the 3rd
order cliques with the lowest entropy; (e) using just 20 of the 3rd order cliques with
the lowest entropy; (f) using just 3rd order cliques; (g) using 4th and all lower order
cliques; (h) using just 4th order cliques; (i) using plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.180: VisTex texture Bark.0000: (a) original 128×128 image; (b–d) synthe-
sised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling and
just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.181: VisTex texture Bark.0001: (a) original 128×128 image; (b–d) synthe-
sised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling and
just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.182: VisTex texture Bark.0002: (a) original 128×128 image; (b–d) synthe-
sised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling and
just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.183: VisTex texture Bark.0003: (a) original 128×128 image; (b–d) synthe-
sised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling and
just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.184: VisTex texture Bark.0004: (a) original 128×128 image; (b–d) synthe-
sised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling and
just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.185: VisTex texture Bark.0005: (a) original 128×128 image; (b–d) synthe-
sised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling and
just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.186: VisTex texture Bark.0006: (a) original 128×128 image; (b–d) synthe-
sised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling and
just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.187: VisTex texture Bark.0007: (a) original 128×128 image; (b–d) synthe-
sised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling and
just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.188: VisTex texture Bark.0008: (a) original 128×128 image; (b–d) synthe-
sised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling and
just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.189: VisTex texture Bark.0009: (a) original 128×128 image; (b–d) synthe-
sised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling and
just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.190: VisTex texture Bark.0010: (a) original 128×128 image; (b–d) synthe-
sised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling and
just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.191: VisTex texture Bark.0011: (a) original 128×128 image; (b–d) synthe-
sised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling and
just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.192: VisTex texture Bark.0012: (a) original 128×128 image; (b–d) synthe-
sised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling and
just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.193: VisTex texture Brick.0000: (a) original 128 × 128 image; (b–d) syn-
thesised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d)
using plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.194: VisTex texture Brick.0001: (a) original 128 × 128 image; (b–d) syn-
thesised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d)
using plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.195: VisTex texture Brick.0002: (a) original 128 × 128 image; (b–d) syn-
thesised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d)
using plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.196: VisTex texture Brick.0003: (a) original 128 × 128 image; (b–d) syn-
thesised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d)
using plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.197: VisTex texture Brick.0004: (a) original 128 × 128 image; (b–d) syn-
thesised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d)
using plain nonparametric MRF.



B.3. TEXTURES SYNTHESISED WITH VARIOUS CLIQUE SETS 379

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.198: VisTex texture Brick.0005: (a) original 128 × 128 image; (b–d) syn-
thesised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d)
using plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.199: VisTex texture Brick.0006: (a) original 128 × 128 image; (b–d) syn-
thesised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d)
using plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.200: VisTex texture Brick.0007: (a) original 128 × 128 image; (b–d) syn-
thesised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d)
using plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.201: VisTex texture Brick.0008: (a) original 128 × 128 image; (b–d) syn-
thesised 256 × 256 images using a 5 × 5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d)
using plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.202: VisTex texture Fabric.0000: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.203: VisTex texture Fabric.0001: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.204: VisTex texture Fabric.0002: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.205: VisTex texture Fabric.0003: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.206: VisTex texture Fabric.0004: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.207: VisTex texture Fabric.0005: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.208: VisTex texture Fabric.0006: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.209: VisTex texture Fabric.0007: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.210: VisTex texture Fabric.0008: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.211: VisTex texture Fabric.0009: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.212: VisTex texture Fabric.0010: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.213: VisTex texture Fabric.0011: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.214: VisTex texture Fabric.0012: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.215: VisTex texture Fabric.0013: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.216: VisTex texture Fabric.0014: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.217: VisTex texture Fabric.0015: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.218: VisTex texture Fabric.0016: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.219: VisTex texture Fabric.0017: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.220: VisTex texture Fabric.0018: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.

(a) Training texture

(b) 2nd order cliques (c) 2nd order cliques (d) No cliques

Figure B.221: VisTex texture Fabric.0019: (a) original 128 × 128 image; (b–d)
synthesised 256×256 images using a 5×5 neighbourhood; (b) using Gibbs sampling
and just pairwise cliques; (c) using ICM sampling and just pairwise cliques; (d) using
plain nonparametric MRF.
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